ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brralrspcev Unicode version

Theorem brralrspcev 4047
Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.)
Assertion
Ref Expression
brralrspcev  |-  ( ( B  e.  X  /\  A. y  e.  Y  A R B )  ->  E. x  e.  X  A. y  e.  Y  A R x )
Distinct variable groups:    x, A    x, B, y    x, R    x, X    x, Y
Allowed substitution hints:    A( y)    R( y)    X( y)    Y( y)

Proof of Theorem brralrspcev
StepHypRef Expression
1 breq2 3993 . . 3  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
21ralbidv 2470 . 2  |-  ( x  =  B  ->  ( A. y  e.  Y  A R x  <->  A. y  e.  Y  A R B ) )
32rspcev 2834 1  |-  ( ( B  e.  X  /\  A. y  e.  Y  A R B )  ->  E. x  e.  X  A. y  e.  Y  A R x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990
This theorem is referenced by:  axpre-suploclemres  7863  fiubm  10763  dedekindeulemub  13390  suplociccreex  13396  dedekindicclemub  13399
  Copyright terms: Public domain W3C validator