ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzshftral Unicode version

Theorem fzshftral 10094
Description: Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.)
Assertion
Ref Expression
fzshftral  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. k  e.  ( ( M  +  K ) ... ( N  +  K ) ) [. ( k  -  K
)  /  j ]. ph ) )
Distinct variable groups:    j, k, K   
j, M, k    j, N, k    ph, k
Allowed substitution hint:    ph( j)

Proof of Theorem fzshftral
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0z 9253 . . . 4  |-  0  e.  ZZ
2 fzrevral 10091 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  0  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. x  e.  ( ( 0  -  N ) ... ( 0  -  M ) ) [. ( 0  -  x
)  /  j ]. ph ) )
31, 2mp3an3 1326 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. j  e.  ( M ... N
) ph  <->  A. x  e.  ( ( 0  -  N
) ... ( 0  -  M ) ) [. ( 0  -  x
)  /  j ]. ph ) )
433adant3 1017 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. x  e.  ( ( 0  -  N ) ... ( 0  -  M ) ) [. ( 0  -  x
)  /  j ]. ph ) )
5 zsubcl 9283 . . . . 5  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  -  N
)  e.  ZZ )
61, 5mpan 424 . . . 4  |-  ( N  e.  ZZ  ->  (
0  -  N )  e.  ZZ )
7 zsubcl 9283 . . . . 5  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  ( 0  -  M
)  e.  ZZ )
81, 7mpan 424 . . . 4  |-  ( M  e.  ZZ  ->  (
0  -  M )  e.  ZZ )
9 id 19 . . . 4  |-  ( K  e.  ZZ  ->  K  e.  ZZ )
10 fzrevral 10091 . . . 4  |-  ( ( ( 0  -  N
)  e.  ZZ  /\  ( 0  -  M
)  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. x  e.  ( ( 0  -  N ) ... (
0  -  M ) ) [. ( 0  -  x )  / 
j ]. ph  <->  A. k  e.  ( ( K  -  ( 0  -  M
) ) ... ( K  -  ( 0  -  N ) ) ) [. ( K  -  k )  /  x ]. [. ( 0  -  x )  / 
j ]. ph ) )
116, 8, 9, 10syl3an 1280 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. x  e.  (
( 0  -  N
) ... ( 0  -  M ) ) [. ( 0  -  x
)  /  j ]. ph  <->  A. k  e.  ( ( K  -  ( 0  -  M ) ) ... ( K  -  ( 0  -  N
) ) ) [. ( K  -  k
)  /  x ]. [. ( 0  -  x
)  /  j ]. ph ) )
12113com12 1207 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. x  e.  (
( 0  -  N
) ... ( 0  -  M ) ) [. ( 0  -  x
)  /  j ]. ph  <->  A. k  e.  ( ( K  -  ( 0  -  M ) ) ... ( K  -  ( 0  -  N
) ) ) [. ( K  -  k
)  /  x ]. [. ( 0  -  x
)  /  j ]. ph ) )
13 elfzelz 10011 . . . . . 6  |-  ( k  e.  ( ( K  -  ( 0  -  M ) ) ... ( K  -  (
0  -  N ) ) )  ->  k  e.  ZZ )
14 zsubcl 9283 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  k  e.  ZZ )  ->  ( K  -  k
)  e.  ZZ )
15 oveq2 5877 . . . . . . . 8  |-  ( x  =  ( K  -  k )  ->  (
0  -  x )  =  ( 0  -  ( K  -  k
) ) )
1615sbcco3g 3114 . . . . . . 7  |-  ( ( K  -  k )  e.  ZZ  ->  ( [. ( K  -  k
)  /  x ]. [. ( 0  -  x
)  /  j ]. ph  <->  [. ( 0  -  ( K  -  k )
)  /  j ]. ph ) )
1714, 16syl 14 . . . . . 6  |-  ( ( K  e.  ZZ  /\  k  e.  ZZ )  ->  ( [. ( K  -  k )  /  x ]. [. ( 0  -  x )  / 
j ]. ph  <->  [. ( 0  -  ( K  -  k ) )  / 
j ]. ph ) )
1813, 17sylan2 286 . . . . 5  |-  ( ( K  e.  ZZ  /\  k  e.  ( ( K  -  ( 0  -  M ) ) ... ( K  -  ( 0  -  N
) ) ) )  ->  ( [. ( K  -  k )  /  x ]. [. (
0  -  x )  /  j ]. ph  <->  [. ( 0  -  ( K  -  k ) )  / 
j ]. ph ) )
1918ralbidva 2473 . . . 4  |-  ( K  e.  ZZ  ->  ( A. k  e.  (
( K  -  (
0  -  M ) ) ... ( K  -  ( 0  -  N ) ) )
[. ( K  -  k )  /  x ]. [. ( 0  -  x )  /  j ]. ph  <->  A. k  e.  ( ( K  -  (
0  -  M ) ) ... ( K  -  ( 0  -  N ) ) )
[. ( 0  -  ( K  -  k
) )  /  j ]. ph ) )
20193ad2ant3 1020 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. k  e.  (
( K  -  (
0  -  M ) ) ... ( K  -  ( 0  -  N ) ) )
[. ( K  -  k )  /  x ]. [. ( 0  -  x )  /  j ]. ph  <->  A. k  e.  ( ( K  -  (
0  -  M ) ) ... ( K  -  ( 0  -  N ) ) )
[. ( 0  -  ( K  -  k
) )  /  j ]. ph ) )
21 zcn 9247 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  CC )
22 zcn 9247 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  CC )
23 zcn 9247 . . . . 5  |-  ( K  e.  ZZ  ->  K  e.  CC )
24 df-neg 8121 . . . . . . . . . 10  |-  -u M  =  ( 0  -  M )
2524oveq2i 5880 . . . . . . . . 9  |-  ( K  -  -u M )  =  ( K  -  (
0  -  M ) )
26 subneg 8196 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  M  e.  CC )  ->  ( K  -  -u M
)  =  ( K  +  M ) )
27 addcom 8084 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  M  e.  CC )  ->  ( K  +  M
)  =  ( M  +  K ) )
2826, 27eqtrd 2210 . . . . . . . . 9  |-  ( ( K  e.  CC  /\  M  e.  CC )  ->  ( K  -  -u M
)  =  ( M  +  K ) )
2925, 28eqtr3id 2224 . . . . . . . 8  |-  ( ( K  e.  CC  /\  M  e.  CC )  ->  ( K  -  (
0  -  M ) )  =  ( M  +  K ) )
30293adant3 1017 . . . . . . 7  |-  ( ( K  e.  CC  /\  M  e.  CC  /\  N  e.  CC )  ->  ( K  -  ( 0  -  M ) )  =  ( M  +  K ) )
31 df-neg 8121 . . . . . . . . . 10  |-  -u N  =  ( 0  -  N )
3231oveq2i 5880 . . . . . . . . 9  |-  ( K  -  -u N )  =  ( K  -  (
0  -  N ) )
33 subneg 8196 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  N  e.  CC )  ->  ( K  -  -u N
)  =  ( K  +  N ) )
34 addcom 8084 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  N  e.  CC )  ->  ( K  +  N
)  =  ( N  +  K ) )
3533, 34eqtrd 2210 . . . . . . . . 9  |-  ( ( K  e.  CC  /\  N  e.  CC )  ->  ( K  -  -u N
)  =  ( N  +  K ) )
3632, 35eqtr3id 2224 . . . . . . . 8  |-  ( ( K  e.  CC  /\  N  e.  CC )  ->  ( K  -  (
0  -  N ) )  =  ( N  +  K ) )
37363adant2 1016 . . . . . . 7  |-  ( ( K  e.  CC  /\  M  e.  CC  /\  N  e.  CC )  ->  ( K  -  ( 0  -  N ) )  =  ( N  +  K ) )
3830, 37oveq12d 5887 . . . . . 6  |-  ( ( K  e.  CC  /\  M  e.  CC  /\  N  e.  CC )  ->  (
( K  -  (
0  -  M ) ) ... ( K  -  ( 0  -  N ) ) )  =  ( ( M  +  K ) ... ( N  +  K
) ) )
39383coml 1210 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  K  e.  CC )  ->  (
( K  -  (
0  -  M ) ) ... ( K  -  ( 0  -  N ) ) )  =  ( ( M  +  K ) ... ( N  +  K
) ) )
4021, 22, 23, 39syl3an 1280 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( K  -  (
0  -  M ) ) ... ( K  -  ( 0  -  N ) ) )  =  ( ( M  +  K ) ... ( N  +  K
) ) )
4140raleqdv 2678 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. k  e.  (
( K  -  (
0  -  M ) ) ... ( K  -  ( 0  -  N ) ) )
[. ( 0  -  ( K  -  k
) )  /  j ]. ph  <->  A. k  e.  ( ( M  +  K
) ... ( N  +  K ) ) [. ( 0  -  ( K  -  k )
)  /  j ]. ph ) )
42 elfzelz 10011 . . . . . . . 8  |-  ( k  e.  ( ( M  +  K ) ... ( N  +  K
) )  ->  k  e.  ZZ )
4342zcnd 9365 . . . . . . 7  |-  ( k  e.  ( ( M  +  K ) ... ( N  +  K
) )  ->  k  e.  CC )
44 df-neg 8121 . . . . . . . 8  |-  -u ( K  -  k )  =  ( 0  -  ( K  -  k
) )
45 negsubdi2 8206 . . . . . . . 8  |-  ( ( K  e.  CC  /\  k  e.  CC )  -> 
-u ( K  -  k )  =  ( k  -  K ) )
4644, 45eqtr3id 2224 . . . . . . 7  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( 0  -  ( K  -  k )
)  =  ( k  -  K ) )
4723, 43, 46syl2an 289 . . . . . 6  |-  ( ( K  e.  ZZ  /\  k  e.  ( ( M  +  K ) ... ( N  +  K
) ) )  -> 
( 0  -  ( K  -  k )
)  =  ( k  -  K ) )
4847sbceq1d 2967 . . . . 5  |-  ( ( K  e.  ZZ  /\  k  e.  ( ( M  +  K ) ... ( N  +  K
) ) )  -> 
( [. ( 0  -  ( K  -  k
) )  /  j ]. ph  <->  [. ( k  -  K )  /  j ]. ph ) )
4948ralbidva 2473 . . . 4  |-  ( K  e.  ZZ  ->  ( A. k  e.  (
( M  +  K
) ... ( N  +  K ) ) [. ( 0  -  ( K  -  k )
)  /  j ]. ph  <->  A. k  e.  ( ( M  +  K ) ... ( N  +  K ) ) [. ( k  -  K
)  /  j ]. ph ) )
50493ad2ant3 1020 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. k  e.  (
( M  +  K
) ... ( N  +  K ) ) [. ( 0  -  ( K  -  k )
)  /  j ]. ph  <->  A. k  e.  ( ( M  +  K ) ... ( N  +  K ) ) [. ( k  -  K
)  /  j ]. ph ) )
5120, 41, 503bitrd 214 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. k  e.  (
( K  -  (
0  -  M ) ) ... ( K  -  ( 0  -  N ) ) )
[. ( K  -  k )  /  x ]. [. ( 0  -  x )  /  j ]. ph  <->  A. k  e.  ( ( M  +  K
) ... ( N  +  K ) ) [. ( k  -  K
)  /  j ]. ph ) )
524, 12, 513bitrd 214 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. k  e.  ( ( M  +  K ) ... ( N  +  K ) ) [. ( k  -  K
)  /  j ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   [.wsbc 2962  (class class class)co 5869   CCcc 7800   0cc0 7802    + caddc 7805    - cmin 8118   -ucneg 8119   ZZcz 9242   ...cfz 9995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996
This theorem is referenced by:  fzoshftral  10224
  Copyright terms: Public domain W3C validator