| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzshftral | Unicode version | ||
| Description: Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.) |
| Ref | Expression |
|---|---|
| fzshftral |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9365 |
. . . 4
| |
| 2 | fzrevral 10209 |
. . . 4
| |
| 3 | 1, 2 | mp3an3 1338 |
. . 3
|
| 4 | 3 | 3adant3 1019 |
. 2
|
| 5 | zsubcl 9395 |
. . . . 5
| |
| 6 | 1, 5 | mpan 424 |
. . . 4
|
| 7 | zsubcl 9395 |
. . . . 5
| |
| 8 | 1, 7 | mpan 424 |
. . . 4
|
| 9 | id 19 |
. . . 4
| |
| 10 | fzrevral 10209 |
. . . 4
| |
| 11 | 6, 8, 9, 10 | syl3an 1291 |
. . 3
|
| 12 | 11 | 3com12 1209 |
. 2
|
| 13 | elfzelz 10129 |
. . . . . 6
| |
| 14 | zsubcl 9395 |
. . . . . . 7
| |
| 15 | oveq2 5942 |
. . . . . . . 8
| |
| 16 | 15 | sbcco3g 3150 |
. . . . . . 7
|
| 17 | 14, 16 | syl 14 |
. . . . . 6
|
| 18 | 13, 17 | sylan2 286 |
. . . . 5
|
| 19 | 18 | ralbidva 2501 |
. . . 4
|
| 20 | 19 | 3ad2ant3 1022 |
. . 3
|
| 21 | zcn 9359 |
. . . . 5
| |
| 22 | zcn 9359 |
. . . . 5
| |
| 23 | zcn 9359 |
. . . . 5
| |
| 24 | df-neg 8228 |
. . . . . . . . . 10
| |
| 25 | 24 | oveq2i 5945 |
. . . . . . . . 9
|
| 26 | subneg 8303 |
. . . . . . . . . 10
| |
| 27 | addcom 8191 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | eqtrd 2237 |
. . . . . . . . 9
|
| 29 | 25, 28 | eqtr3id 2251 |
. . . . . . . 8
|
| 30 | 29 | 3adant3 1019 |
. . . . . . 7
|
| 31 | df-neg 8228 |
. . . . . . . . . 10
| |
| 32 | 31 | oveq2i 5945 |
. . . . . . . . 9
|
| 33 | subneg 8303 |
. . . . . . . . . 10
| |
| 34 | addcom 8191 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | eqtrd 2237 |
. . . . . . . . 9
|
| 36 | 32, 35 | eqtr3id 2251 |
. . . . . . . 8
|
| 37 | 36 | 3adant2 1018 |
. . . . . . 7
|
| 38 | 30, 37 | oveq12d 5952 |
. . . . . 6
|
| 39 | 38 | 3coml 1212 |
. . . . 5
|
| 40 | 21, 22, 23, 39 | syl3an 1291 |
. . . 4
|
| 41 | 40 | raleqdv 2707 |
. . 3
|
| 42 | elfzelz 10129 |
. . . . . . . 8
| |
| 43 | 42 | zcnd 9478 |
. . . . . . 7
|
| 44 | df-neg 8228 |
. . . . . . . 8
| |
| 45 | negsubdi2 8313 |
. . . . . . . 8
| |
| 46 | 44, 45 | eqtr3id 2251 |
. . . . . . 7
|
| 47 | 23, 43, 46 | syl2an 289 |
. . . . . 6
|
| 48 | 47 | sbceq1d 3002 |
. . . . 5
|
| 49 | 48 | ralbidva 2501 |
. . . 4
|
| 50 | 49 | 3ad2ant3 1022 |
. . 3
|
| 51 | 20, 41, 50 | 3bitrd 214 |
. 2
|
| 52 | 4, 12, 51 | 3bitrd 214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-n0 9278 df-z 9355 df-uz 9631 df-fz 10113 |
| This theorem is referenced by: fzoshftral 10348 |
| Copyright terms: Public domain | W3C validator |