| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzshftral | Unicode version | ||
| Description: Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.) |
| Ref | Expression |
|---|---|
| fzshftral |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9403 |
. . . 4
| |
| 2 | fzrevral 10247 |
. . . 4
| |
| 3 | 1, 2 | mp3an3 1339 |
. . 3
|
| 4 | 3 | 3adant3 1020 |
. 2
|
| 5 | zsubcl 9433 |
. . . . 5
| |
| 6 | 1, 5 | mpan 424 |
. . . 4
|
| 7 | zsubcl 9433 |
. . . . 5
| |
| 8 | 1, 7 | mpan 424 |
. . . 4
|
| 9 | id 19 |
. . . 4
| |
| 10 | fzrevral 10247 |
. . . 4
| |
| 11 | 6, 8, 9, 10 | syl3an 1292 |
. . 3
|
| 12 | 11 | 3com12 1210 |
. 2
|
| 13 | elfzelz 10167 |
. . . . . 6
| |
| 14 | zsubcl 9433 |
. . . . . . 7
| |
| 15 | oveq2 5965 |
. . . . . . . 8
| |
| 16 | 15 | sbcco3g 3155 |
. . . . . . 7
|
| 17 | 14, 16 | syl 14 |
. . . . . 6
|
| 18 | 13, 17 | sylan2 286 |
. . . . 5
|
| 19 | 18 | ralbidva 2503 |
. . . 4
|
| 20 | 19 | 3ad2ant3 1023 |
. . 3
|
| 21 | zcn 9397 |
. . . . 5
| |
| 22 | zcn 9397 |
. . . . 5
| |
| 23 | zcn 9397 |
. . . . 5
| |
| 24 | df-neg 8266 |
. . . . . . . . . 10
| |
| 25 | 24 | oveq2i 5968 |
. . . . . . . . 9
|
| 26 | subneg 8341 |
. . . . . . . . . 10
| |
| 27 | addcom 8229 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | eqtrd 2239 |
. . . . . . . . 9
|
| 29 | 25, 28 | eqtr3id 2253 |
. . . . . . . 8
|
| 30 | 29 | 3adant3 1020 |
. . . . . . 7
|
| 31 | df-neg 8266 |
. . . . . . . . . 10
| |
| 32 | 31 | oveq2i 5968 |
. . . . . . . . 9
|
| 33 | subneg 8341 |
. . . . . . . . . 10
| |
| 34 | addcom 8229 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | eqtrd 2239 |
. . . . . . . . 9
|
| 36 | 32, 35 | eqtr3id 2253 |
. . . . . . . 8
|
| 37 | 36 | 3adant2 1019 |
. . . . . . 7
|
| 38 | 30, 37 | oveq12d 5975 |
. . . . . 6
|
| 39 | 38 | 3coml 1213 |
. . . . 5
|
| 40 | 21, 22, 23, 39 | syl3an 1292 |
. . . 4
|
| 41 | 40 | raleqdv 2709 |
. . 3
|
| 42 | elfzelz 10167 |
. . . . . . . 8
| |
| 43 | 42 | zcnd 9516 |
. . . . . . 7
|
| 44 | df-neg 8266 |
. . . . . . . 8
| |
| 45 | negsubdi2 8351 |
. . . . . . . 8
| |
| 46 | 44, 45 | eqtr3id 2253 |
. . . . . . 7
|
| 47 | 23, 43, 46 | syl2an 289 |
. . . . . 6
|
| 48 | 47 | sbceq1d 3007 |
. . . . 5
|
| 49 | 48 | ralbidva 2503 |
. . . 4
|
| 50 | 49 | 3ad2ant3 1023 |
. . 3
|
| 51 | 20, 41, 50 | 3bitrd 214 |
. 2
|
| 52 | 4, 12, 51 | 3bitrd 214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-fz 10151 |
| This theorem is referenced by: fzoshftral 10389 |
| Copyright terms: Public domain | W3C validator |