| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzshftral | Unicode version | ||
| Description: Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.) |
| Ref | Expression |
|---|---|
| fzshftral |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9354 |
. . . 4
| |
| 2 | fzrevral 10197 |
. . . 4
| |
| 3 | 1, 2 | mp3an3 1337 |
. . 3
|
| 4 | 3 | 3adant3 1019 |
. 2
|
| 5 | zsubcl 9384 |
. . . . 5
| |
| 6 | 1, 5 | mpan 424 |
. . . 4
|
| 7 | zsubcl 9384 |
. . . . 5
| |
| 8 | 1, 7 | mpan 424 |
. . . 4
|
| 9 | id 19 |
. . . 4
| |
| 10 | fzrevral 10197 |
. . . 4
| |
| 11 | 6, 8, 9, 10 | syl3an 1291 |
. . 3
|
| 12 | 11 | 3com12 1209 |
. 2
|
| 13 | elfzelz 10117 |
. . . . . 6
| |
| 14 | zsubcl 9384 |
. . . . . . 7
| |
| 15 | oveq2 5933 |
. . . . . . . 8
| |
| 16 | 15 | sbcco3g 3142 |
. . . . . . 7
|
| 17 | 14, 16 | syl 14 |
. . . . . 6
|
| 18 | 13, 17 | sylan2 286 |
. . . . 5
|
| 19 | 18 | ralbidva 2493 |
. . . 4
|
| 20 | 19 | 3ad2ant3 1022 |
. . 3
|
| 21 | zcn 9348 |
. . . . 5
| |
| 22 | zcn 9348 |
. . . . 5
| |
| 23 | zcn 9348 |
. . . . 5
| |
| 24 | df-neg 8217 |
. . . . . . . . . 10
| |
| 25 | 24 | oveq2i 5936 |
. . . . . . . . 9
|
| 26 | subneg 8292 |
. . . . . . . . . 10
| |
| 27 | addcom 8180 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | eqtrd 2229 |
. . . . . . . . 9
|
| 29 | 25, 28 | eqtr3id 2243 |
. . . . . . . 8
|
| 30 | 29 | 3adant3 1019 |
. . . . . . 7
|
| 31 | df-neg 8217 |
. . . . . . . . . 10
| |
| 32 | 31 | oveq2i 5936 |
. . . . . . . . 9
|
| 33 | subneg 8292 |
. . . . . . . . . 10
| |
| 34 | addcom 8180 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | eqtrd 2229 |
. . . . . . . . 9
|
| 36 | 32, 35 | eqtr3id 2243 |
. . . . . . . 8
|
| 37 | 36 | 3adant2 1018 |
. . . . . . 7
|
| 38 | 30, 37 | oveq12d 5943 |
. . . . . 6
|
| 39 | 38 | 3coml 1212 |
. . . . 5
|
| 40 | 21, 22, 23, 39 | syl3an 1291 |
. . . 4
|
| 41 | 40 | raleqdv 2699 |
. . 3
|
| 42 | elfzelz 10117 |
. . . . . . . 8
| |
| 43 | 42 | zcnd 9466 |
. . . . . . 7
|
| 44 | df-neg 8217 |
. . . . . . . 8
| |
| 45 | negsubdi2 8302 |
. . . . . . . 8
| |
| 46 | 44, 45 | eqtr3id 2243 |
. . . . . . 7
|
| 47 | 23, 43, 46 | syl2an 289 |
. . . . . 6
|
| 48 | 47 | sbceq1d 2994 |
. . . . 5
|
| 49 | 48 | ralbidva 2493 |
. . . 4
|
| 50 | 49 | 3ad2ant3 1022 |
. . 3
|
| 51 | 20, 41, 50 | 3bitrd 214 |
. 2
|
| 52 | 4, 12, 51 | 3bitrd 214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 |
| This theorem is referenced by: fzoshftral 10331 |
| Copyright terms: Public domain | W3C validator |