| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzshftral | Unicode version | ||
| Description: Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.) |
| Ref | Expression |
|---|---|
| fzshftral |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9453 |
. . . 4
| |
| 2 | fzrevral 10297 |
. . . 4
| |
| 3 | 1, 2 | mp3an3 1360 |
. . 3
|
| 4 | 3 | 3adant3 1041 |
. 2
|
| 5 | zsubcl 9483 |
. . . . 5
| |
| 6 | 1, 5 | mpan 424 |
. . . 4
|
| 7 | zsubcl 9483 |
. . . . 5
| |
| 8 | 1, 7 | mpan 424 |
. . . 4
|
| 9 | id 19 |
. . . 4
| |
| 10 | fzrevral 10297 |
. . . 4
| |
| 11 | 6, 8, 9, 10 | syl3an 1313 |
. . 3
|
| 12 | 11 | 3com12 1231 |
. 2
|
| 13 | elfzelz 10217 |
. . . . . 6
| |
| 14 | zsubcl 9483 |
. . . . . . 7
| |
| 15 | oveq2 6008 |
. . . . . . . 8
| |
| 16 | 15 | sbcco3g 3182 |
. . . . . . 7
|
| 17 | 14, 16 | syl 14 |
. . . . . 6
|
| 18 | 13, 17 | sylan2 286 |
. . . . 5
|
| 19 | 18 | ralbidva 2526 |
. . . 4
|
| 20 | 19 | 3ad2ant3 1044 |
. . 3
|
| 21 | zcn 9447 |
. . . . 5
| |
| 22 | zcn 9447 |
. . . . 5
| |
| 23 | zcn 9447 |
. . . . 5
| |
| 24 | df-neg 8316 |
. . . . . . . . . 10
| |
| 25 | 24 | oveq2i 6011 |
. . . . . . . . 9
|
| 26 | subneg 8391 |
. . . . . . . . . 10
| |
| 27 | addcom 8279 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | eqtrd 2262 |
. . . . . . . . 9
|
| 29 | 25, 28 | eqtr3id 2276 |
. . . . . . . 8
|
| 30 | 29 | 3adant3 1041 |
. . . . . . 7
|
| 31 | df-neg 8316 |
. . . . . . . . . 10
| |
| 32 | 31 | oveq2i 6011 |
. . . . . . . . 9
|
| 33 | subneg 8391 |
. . . . . . . . . 10
| |
| 34 | addcom 8279 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | eqtrd 2262 |
. . . . . . . . 9
|
| 36 | 32, 35 | eqtr3id 2276 |
. . . . . . . 8
|
| 37 | 36 | 3adant2 1040 |
. . . . . . 7
|
| 38 | 30, 37 | oveq12d 6018 |
. . . . . 6
|
| 39 | 38 | 3coml 1234 |
. . . . 5
|
| 40 | 21, 22, 23, 39 | syl3an 1313 |
. . . 4
|
| 41 | 40 | raleqdv 2734 |
. . 3
|
| 42 | elfzelz 10217 |
. . . . . . . 8
| |
| 43 | 42 | zcnd 9566 |
. . . . . . 7
|
| 44 | df-neg 8316 |
. . . . . . . 8
| |
| 45 | negsubdi2 8401 |
. . . . . . . 8
| |
| 46 | 44, 45 | eqtr3id 2276 |
. . . . . . 7
|
| 47 | 23, 43, 46 | syl2an 289 |
. . . . . 6
|
| 48 | 47 | sbceq1d 3033 |
. . . . 5
|
| 49 | 48 | ralbidva 2526 |
. . . 4
|
| 50 | 49 | 3ad2ant3 1044 |
. . 3
|
| 51 | 20, 41, 50 | 3bitrd 214 |
. 2
|
| 52 | 4, 12, 51 | 3bitrd 214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 |
| This theorem is referenced by: fzoshftral 10439 |
| Copyright terms: Public domain | W3C validator |