Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcco3g | GIF version |
Description: Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
sbcco3g.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sbcco3g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcnestg 3098 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) | |
2 | elex 2737 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | nfcvd 2309 | . . . 4 ⊢ (𝐴 ∈ V → Ⅎ𝑥𝐶) | |
4 | sbcco3g.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
5 | 3, 4 | csbiegf 3088 | . . 3 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
6 | dfsbcq 2953 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐵 = 𝐶 → ([⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) | |
7 | 2, 5, 6 | 3syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) |
8 | 1, 7 | bitrd 187 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 Vcvv 2726 [wsbc 2951 ⦋csb 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: fzshftral 10043 |
Copyright terms: Public domain | W3C validator |