ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcco3g GIF version

Theorem sbcco3g 3112
Description: Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
Hypothesis
Ref Expression
sbcco3g.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
sbcco3g (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcco3g
StepHypRef Expression
1 sbcnestg 3108 . 2 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
2 elex 2746 . . 3 (𝐴𝑉𝐴 ∈ V)
3 nfcvd 2318 . . . 4 (𝐴 ∈ V → 𝑥𝐶)
4 sbcco3g.1 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
53, 4csbiegf 3098 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐶)
6 dfsbcq 2962 . . 3 (𝐴 / 𝑥𝐵 = 𝐶 → ([𝐴 / 𝑥𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
72, 5, 63syl 17 . 2 (𝐴𝑉 → ([𝐴 / 𝑥𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
81, 7bitrd 188 1 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wcel 2146  Vcvv 2735  [wsbc 2960  csb 3055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-sbc 2961  df-csb 3056
This theorem is referenced by:  fzshftral  10078
  Copyright terms: Public domain W3C validator