| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcco3g | GIF version | ||
| Description: Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.) |
| Ref | Expression |
|---|---|
| sbcco3g.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sbcco3g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcnestg 3155 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) | |
| 2 | elex 2788 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 3 | nfcvd 2351 | . . . 4 ⊢ (𝐴 ∈ V → Ⅎ𝑥𝐶) | |
| 4 | sbcco3g.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 5 | 3, 4 | csbiegf 3145 | . . 3 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| 6 | dfsbcq 3007 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐵 = 𝐶 → ([⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) | |
| 7 | 2, 5, 6 | 3syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) |
| 8 | 1, 7 | bitrd 188 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2178 Vcvv 2776 [wsbc 3005 ⦋csb 3101 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-sbc 3006 df-csb 3102 |
| This theorem is referenced by: fzshftral 10265 |
| Copyright terms: Public domain | W3C validator |