ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbccom Unicode version

Theorem sbccom 3026
Description: Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
Assertion
Ref Expression
sbccom  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. B  / 
y ]. [. A  /  x ]. ph )
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem sbccom
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbccomlem 3025 . . . 4  |-  ( [. A  /  z ]. [. B  /  w ]. [. w  /  y ]. [. z  /  x ]. ph  <->  [. B  /  w ]. [. A  / 
z ]. [. w  / 
y ]. [. z  /  x ]. ph )
2 sbccomlem 3025 . . . . . . 7  |-  ( [. w  /  y ]. [. z  /  x ]. ph  <->  [. z  /  x ]. [. w  / 
y ]. ph )
32sbcbii 3010 . . . . . 6  |-  ( [. B  /  w ]. [. w  /  y ]. [. z  /  x ]. ph  <->  [. B  /  w ]. [. z  /  x ]. [. w  / 
y ]. ph )
4 sbccomlem 3025 . . . . . 6  |-  ( [. B  /  w ]. [. z  /  x ]. [. w  /  y ]. ph  <->  [. z  /  x ]. [. B  /  w ]. [. w  / 
y ]. ph )
53, 4bitri 183 . . . . 5  |-  ( [. B  /  w ]. [. w  /  y ]. [. z  /  x ]. ph  <->  [. z  /  x ]. [. B  /  w ]. [. w  / 
y ]. ph )
65sbcbii 3010 . . . 4  |-  ( [. A  /  z ]. [. B  /  w ]. [. w  /  y ]. [. z  /  x ]. ph  <->  [. A  / 
z ]. [. z  /  x ]. [. B  /  w ]. [. w  / 
y ]. ph )
7 sbccomlem 3025 . . . . 5  |-  ( [. A  /  z ]. [. w  /  y ]. [. z  /  x ]. ph  <->  [. w  / 
y ]. [. A  / 
z ]. [. z  /  x ]. ph )
87sbcbii 3010 . . . 4  |-  ( [. B  /  w ]. [. A  /  z ]. [. w  /  y ]. [. z  /  x ]. ph  <->  [. B  /  w ]. [. w  / 
y ]. [. A  / 
z ]. [. z  /  x ]. ph )
91, 6, 83bitr3i 209 . . 3  |-  ( [. A  /  z ]. [. z  /  x ]. [. B  /  w ]. [. w  /  y ]. ph  <->  [. B  /  w ]. [. w  / 
y ]. [. A  / 
z ]. [. z  /  x ]. ph )
10 sbcco 2972 . . 3  |-  ( [. A  /  z ]. [. z  /  x ]. [. B  /  w ]. [. w  /  y ]. ph  <->  [. A  /  x ]. [. B  /  w ]. [. w  / 
y ]. ph )
11 sbcco 2972 . . 3  |-  ( [. B  /  w ]. [. w  /  y ]. [. A  /  z ]. [. z  /  x ]. ph  <->  [. B  / 
y ]. [. A  / 
z ]. [. z  /  x ]. ph )
129, 10, 113bitr3i 209 . 2  |-  ( [. A  /  x ]. [. B  /  w ]. [. w  /  y ]. ph  <->  [. B  / 
y ]. [. A  / 
z ]. [. z  /  x ]. ph )
13 sbcco 2972 . . 3  |-  ( [. B  /  w ]. [. w  /  y ]. ph  <->  [. B  / 
y ]. ph )
1413sbcbii 3010 . 2  |-  ( [. A  /  x ]. [. B  /  w ]. [. w  /  y ]. ph  <->  [. A  /  x ]. [. B  / 
y ]. ph )
15 sbcco 2972 . . 3  |-  ( [. A  /  z ]. [. z  /  x ]. ph  <->  [. A  /  x ]. ph )
1615sbcbii 3010 . 2  |-  ( [. B  /  y ]. [. A  /  z ]. [. z  /  x ]. ph  <->  [. B  / 
y ]. [. A  /  x ]. ph )
1712, 14, 163bitr3i 209 1  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. B  / 
y ]. [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952
This theorem is referenced by:  csbcomg  3068  csbabg  3106  mpoxopovel  6209
  Copyright terms: Public domain W3C validator