| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbccom | Unicode version | ||
| Description: Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbccom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbccomlem 3103 |
. . . 4
| |
| 2 | sbccomlem 3103 |
. . . . . . 7
| |
| 3 | 2 | sbcbii 3088 |
. . . . . 6
|
| 4 | sbccomlem 3103 |
. . . . . 6
| |
| 5 | 3, 4 | bitri 184 |
. . . . 5
|
| 6 | 5 | sbcbii 3088 |
. . . 4
|
| 7 | sbccomlem 3103 |
. . . . 5
| |
| 8 | 7 | sbcbii 3088 |
. . . 4
|
| 9 | 1, 6, 8 | 3bitr3i 210 |
. . 3
|
| 10 | sbcco 3050 |
. . 3
| |
| 11 | sbcco 3050 |
. . 3
| |
| 12 | 9, 10, 11 | 3bitr3i 210 |
. 2
|
| 13 | sbcco 3050 |
. . 3
| |
| 14 | 13 | sbcbii 3088 |
. 2
|
| 15 | sbcco 3050 |
. . 3
| |
| 16 | 15 | sbcbii 3088 |
. 2
|
| 17 | 12, 14, 16 | 3bitr3i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 |
| This theorem is referenced by: csbcomg 3147 csbabg 3186 mpoxopovel 6387 wrd2ind 11255 |
| Copyright terms: Public domain | W3C validator |