| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbccom | Unicode version | ||
| Description: Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbccom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbccomlem 3073 |
. . . 4
| |
| 2 | sbccomlem 3073 |
. . . . . . 7
| |
| 3 | 2 | sbcbii 3058 |
. . . . . 6
|
| 4 | sbccomlem 3073 |
. . . . . 6
| |
| 5 | 3, 4 | bitri 184 |
. . . . 5
|
| 6 | 5 | sbcbii 3058 |
. . . 4
|
| 7 | sbccomlem 3073 |
. . . . 5
| |
| 8 | 7 | sbcbii 3058 |
. . . 4
|
| 9 | 1, 6, 8 | 3bitr3i 210 |
. . 3
|
| 10 | sbcco 3020 |
. . 3
| |
| 11 | sbcco 3020 |
. . 3
| |
| 12 | 9, 10, 11 | 3bitr3i 210 |
. 2
|
| 13 | sbcco 3020 |
. . 3
| |
| 14 | 13 | sbcbii 3058 |
. 2
|
| 15 | sbcco 3020 |
. . 3
| |
| 16 | 15 | sbcbii 3058 |
. 2
|
| 17 | 12, 14, 16 | 3bitr3i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sbc 2999 |
| This theorem is referenced by: csbcomg 3116 csbabg 3155 mpoxopovel 6327 |
| Copyright terms: Public domain | W3C validator |