Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpoxopovel | Unicode version |
Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopoveq.f |
Ref | Expression |
---|---|
mpoxopovel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxopoveq.f | . . . 4 | |
2 | 1 | mpoxopn0yelv 6207 | . . 3 |
3 | 2 | pm4.71rd 392 | . 2 |
4 | 1 | mpoxopoveq 6208 | . . . . . 6 |
5 | 4 | eleq2d 2236 | . . . . 5 |
6 | nfcv 2308 | . . . . . . 7 | |
7 | 6 | elrabsf 2989 | . . . . . 6 |
8 | sbccom 3026 | . . . . . . . 8 | |
9 | sbccom 3026 | . . . . . . . . 9 | |
10 | 9 | sbcbii 3010 | . . . . . . . 8 |
11 | 8, 10 | bitri 183 | . . . . . . 7 |
12 | 11 | anbi2i 453 | . . . . . 6 |
13 | 7, 12 | bitri 183 | . . . . 5 |
14 | 5, 13 | bitrdi 195 | . . . 4 |
15 | 14 | pm5.32da 448 | . . 3 |
16 | 3anass 972 | . . 3 | |
17 | 15, 16 | bitr4di 197 | . 2 |
18 | 3, 17 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 crab 2448 cvv 2726 wsbc 2951 cop 3579 cfv 5188 (class class class)co 5842 cmpo 5844 c1st 6106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |