ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoxopovel Unicode version

Theorem mpoxopovel 6299
Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopoveq.f  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  |  ph } )
Assertion
Ref Expression
mpoxopovel  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  <->  ( K  e.  V  /\  N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) ) )
Distinct variable groups:    n, K, x, y    n, V, x, y    n, W, x, y    n, X, x, y    n, Y, x, y    x, N, y
Allowed substitution hints:    ph( x, y, n)    F( x, y, n)    N( n)

Proof of Theorem mpoxopovel
StepHypRef Expression
1 mpoxopoveq.f . . . 4  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  |  ph } )
21mpoxopn0yelv 6297 . . 3  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  ->  K  e.  V ) )
32pm4.71rd 394 . 2  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  <->  ( K  e.  V  /\  N  e.  ( <. V ,  W >. F K ) ) ) )
41mpoxopoveq 6298 . . . . . 6  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( <. V ,  W >. F K )  =  {
n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
)
54eleq2d 2266 . . . . 5  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( N  e.  ( <. V ,  W >. F K )  <->  N  e.  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph } ) )
6 nfcv 2339 . . . . . . 7  |-  F/_ n V
76elrabsf 3028 . . . . . 6  |-  ( N  e.  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }  <->  ( N  e.  V  /\  [. N  /  n ]. [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph ) )
8 sbccom 3065 . . . . . . . 8  |-  ( [. N  /  n ]. [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. N  /  n ]. [. K  /  y ]. ph )
9 sbccom 3065 . . . . . . . . 9  |-  ( [. N  /  n ]. [. K  /  y ]. ph  <->  [. K  / 
y ]. [. N  /  n ]. ph )
109sbcbii 3049 . . . . . . . 8  |-  ( [. <. V ,  W >.  /  x ]. [. N  /  n ]. [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
118, 10bitri 184 . . . . . . 7  |-  ( [. N  /  n ]. [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
1211anbi2i 457 . . . . . 6  |-  ( ( N  e.  V  /\  [. N  /  n ]. [.
<. V ,  W >.  /  x ]. [. K  /  y ]. ph )  <->  ( N  e.  V  /\  [.
<. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
)
137, 12bitri 184 . . . . 5  |-  ( N  e.  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }  <->  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) )
145, 13bitrdi 196 . . . 4  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( N  e.  ( <. V ,  W >. F K )  <->  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) ) )
1514pm5.32da 452 . . 3  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( ( K  e.  V  /\  N  e.  ( <. V ,  W >. F K ) )  <-> 
( K  e.  V  /\  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
) ) )
16 3anass 984 . . 3  |-  ( ( K  e.  V  /\  N  e.  V  /\  [.
<. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )  <->  ( K  e.  V  /\  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
) )
1715, 16bitr4di 198 . 2  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( ( K  e.  V  /\  N  e.  ( <. V ,  W >. F K ) )  <-> 
( K  e.  V  /\  N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
) )
183, 17bitrd 188 1  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  <->  ( K  e.  V  /\  N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763   [.wsbc 2989   <.cop 3625   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   1stc1st 6196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator