ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbccom GIF version

Theorem sbccom 3012
Description: Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
Assertion
Ref Expression
sbccom ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem sbccom
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbccomlem 3011 . . . 4 ([𝐴 / 𝑧][𝐵 / 𝑤][𝑤 / 𝑦][𝑧 / 𝑥]𝜑[𝐵 / 𝑤][𝐴 / 𝑧][𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
2 sbccomlem 3011 . . . . . . 7 ([𝑤 / 𝑦][𝑧 / 𝑥]𝜑[𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
32sbcbii 2996 . . . . . 6 ([𝐵 / 𝑤][𝑤 / 𝑦][𝑧 / 𝑥]𝜑[𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
4 sbccomlem 3011 . . . . . 6 ([𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
53, 4bitri 183 . . . . 5 ([𝐵 / 𝑤][𝑤 / 𝑦][𝑧 / 𝑥]𝜑[𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
65sbcbii 2996 . . . 4 ([𝐴 / 𝑧][𝐵 / 𝑤][𝑤 / 𝑦][𝑧 / 𝑥]𝜑[𝐴 / 𝑧][𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
7 sbccomlem 3011 . . . . 5 ([𝐴 / 𝑧][𝑤 / 𝑦][𝑧 / 𝑥]𝜑[𝑤 / 𝑦][𝐴 / 𝑧][𝑧 / 𝑥]𝜑)
87sbcbii 2996 . . . 4 ([𝐵 / 𝑤][𝐴 / 𝑧][𝑤 / 𝑦][𝑧 / 𝑥]𝜑[𝐵 / 𝑤][𝑤 / 𝑦][𝐴 / 𝑧][𝑧 / 𝑥]𝜑)
91, 6, 83bitr3i 209 . . 3 ([𝐴 / 𝑧][𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐵 / 𝑤][𝑤 / 𝑦][𝐴 / 𝑧][𝑧 / 𝑥]𝜑)
10 sbcco 2958 . . 3 ([𝐴 / 𝑧][𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
11 sbcco 2958 . . 3 ([𝐵 / 𝑤][𝑤 / 𝑦][𝐴 / 𝑧][𝑧 / 𝑥]𝜑[𝐵 / 𝑦][𝐴 / 𝑧][𝑧 / 𝑥]𝜑)
129, 10, 113bitr3i 209 . 2 ([𝐴 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑧][𝑧 / 𝑥]𝜑)
13 sbcco 2958 . . 3 ([𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐵 / 𝑦]𝜑)
1413sbcbii 2996 . 2 ([𝐴 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
15 sbcco 2958 . . 3 ([𝐴 / 𝑧][𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
1615sbcbii 2996 . 2 ([𝐵 / 𝑦][𝐴 / 𝑧][𝑧 / 𝑥]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
1712, 14, 163bitr3i 209 1 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  [wsbc 2937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-sbc 2938
This theorem is referenced by:  csbcomg  3054  csbabg  3092  mpoxopovel  6182
  Copyright terms: Public domain W3C validator