ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcieg Unicode version

Theorem sbcieg 3061
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.)
Hypothesis
Ref Expression
sbcieg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
sbcieg  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem sbcieg
StepHypRef Expression
1 nfv 1574 . 2  |-  F/ x ps
2 sbcieg.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
31, 2sbciegf 3060 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   [.wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029
This theorem is referenced by:  sbcie  3063  ralsng  3706  rexsng  3707  ralrnmpt  5776  rexrnmpt  5777  nn1suc  9125  cjth  11352  bezoutlemnewy  12512  bezoutlemstep  12513  bezoutlema  12515  bezoutlemb  12516  prmind2  12637
  Copyright terms: Public domain W3C validator