| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcieg | Unicode version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcieg.1 |
|
| Ref | Expression |
|---|---|
| sbcieg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 |
. 2
| |
| 2 | sbcieg.1 |
. 2
| |
| 3 | 1, 2 | sbciegf 3029 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-sbc 2998 |
| This theorem is referenced by: sbcie 3032 ralsng 3672 rexsng 3673 ralrnmpt 5721 rexrnmpt 5722 nn1suc 9054 cjth 11099 bezoutlemnewy 12259 bezoutlemstep 12260 bezoutlema 12262 bezoutlemb 12263 prmind2 12384 |
| Copyright terms: Public domain | W3C validator |