Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcieg | Unicode version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
sbcieg.1 |
Ref | Expression |
---|---|
sbcieg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1508 | . 2 | |
2 | sbcieg.1 | . 2 | |
3 | 1, 2 | sbciegf 2968 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 wcel 2128 wsbc 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-sbc 2938 |
This theorem is referenced by: sbcie 2971 ralsng 3600 rexsng 3601 ralrnmpt 5610 rexrnmpt 5611 nn1suc 8853 cjth 10750 bezoutlemnewy 11884 bezoutlemstep 11885 bezoutlema 11887 bezoutlemb 11888 prmind2 12001 |
Copyright terms: Public domain | W3C validator |