ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brab1 Unicode version

Theorem brab1 4064
Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.)
Assertion
Ref Expression
brab1  |-  ( x R A  <->  x  e.  { z  |  z R A } )
Distinct variable groups:    z, A    z, R
Allowed substitution hints:    A( x)    R( x)

Proof of Theorem brab1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2754 . . 3  |-  x  e. 
_V
2 breq1 4020 . . . 4  |-  ( z  =  y  ->  (
z R A  <->  y R A ) )
3 breq1 4020 . . . 4  |-  ( y  =  x  ->  (
y R A  <->  x R A ) )
42, 3sbcie2g 3010 . . 3  |-  ( x  e.  _V  ->  ( [. x  /  z ]. z R A  <->  x R A ) )
51, 4ax-mp 5 . 2  |-  ( [. x  /  z ]. z R A  <->  x R A )
6 df-sbc 2977 . 2  |-  ( [. x  /  z ]. z R A  <->  x  e.  { z  |  z R A } )
75, 6bitr3i 186 1  |-  ( x R A  <->  x  e.  { z  |  z R A } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2159   {cab 2174   _Vcvv 2751   [.wsbc 2976   class class class wbr 4017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-v 2753  df-sbc 2977  df-un 3147  df-sn 3612  df-pr 3613  df-op 3615  df-br 4018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator