ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brab1 Unicode version

Theorem brab1 4080
Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.)
Assertion
Ref Expression
brab1  |-  ( x R A  <->  x  e.  { z  |  z R A } )
Distinct variable groups:    z, A    z, R
Allowed substitution hints:    A( x)    R( x)

Proof of Theorem brab1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . 3  |-  x  e. 
_V
2 breq1 4036 . . . 4  |-  ( z  =  y  ->  (
z R A  <->  y R A ) )
3 breq1 4036 . . . 4  |-  ( y  =  x  ->  (
y R A  <->  x R A ) )
42, 3sbcie2g 3023 . . 3  |-  ( x  e.  _V  ->  ( [. x  /  z ]. z R A  <->  x R A ) )
51, 4ax-mp 5 . 2  |-  ( [. x  /  z ]. z R A  <->  x R A )
6 df-sbc 2990 . 2  |-  ( [. x  /  z ]. z R A  <->  x  e.  { z  |  z R A } )
75, 6bitr3i 186 1  |-  ( x R A  <->  x  e.  { z  |  z R A } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2167   {cab 2182   _Vcvv 2763   [.wsbc 2989   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator