Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brab1 | Unicode version |
Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.) |
Ref | Expression |
---|---|
brab1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . 3 | |
2 | breq1 4001 | . . . 4 | |
3 | breq1 4001 | . . . 4 | |
4 | 2, 3 | sbcie2g 2994 | . . 3 |
5 | 1, 4 | ax-mp 5 | . 2 |
6 | df-sbc 2961 | . 2 | |
7 | 5, 6 | bitr3i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wcel 2146 cab 2161 cvv 2735 wsbc 2960 class class class wbr 3998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-sbc 2961 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |