![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcie2g | GIF version |
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 2873 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
sbcie2g.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
sbcie2g.2 | ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcie2g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2842 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | sbcie2g.2 | . 2 ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) | |
3 | sbsbc 2844 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
4 | nfv 1466 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | sbcie2g.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | sbie 1721 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
7 | 3, 6 | bitr3i 184 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
8 | 1, 2, 7 | vtoclbg 2680 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1289 ∈ wcel 1438 [wsb 1692 [wsbc 2840 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-sbc 2841 |
This theorem is referenced by: sbcel2gv 2902 csbie2g 2978 brab1 3890 |
Copyright terms: Public domain | W3C validator |