ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcie2g GIF version

Theorem sbcie2g 3023
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 3024 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
sbcie2g.1 (𝑥 = 𝑦 → (𝜑𝜓))
sbcie2g.2 (𝑦 = 𝐴 → (𝜓𝜒))
Assertion
Ref Expression
sbcie2g (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜒))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜒,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem sbcie2g
StepHypRef Expression
1 dfsbcq 2991 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 sbcie2g.2 . 2 (𝑦 = 𝐴 → (𝜓𝜒))
3 sbsbc 2993 . . 3 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
4 nfv 1542 . . . 4 𝑥𝜓
5 sbcie2g.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
64, 5sbie 1805 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
73, 6bitr3i 186 . 2 ([𝑦 / 𝑥]𝜑𝜓)
81, 2, 7vtoclbg 2825 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  [wsb 1776  wcel 2167  [wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990
This theorem is referenced by:  sbcel2gv  3053  csbie2g  3135  brab1  4080
  Copyright terms: Public domain W3C validator