| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcie2g | GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 3024 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcie2g.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| sbcie2g.2 | ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbcie2g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 2991 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 2 | sbcie2g.2 | . 2 ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 3 | sbsbc 2993 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
| 4 | nfv 1542 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 5 | sbcie2g.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 4, 5 | sbie 1805 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 7 | 3, 6 | bitr3i 186 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 8 | 1, 2, 7 | vtoclbg 2825 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 [wsb 1776 ∈ wcel 2167 [wsbc 2989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 |
| This theorem is referenced by: sbcel2gv 3053 csbie2g 3135 brab1 4080 |
| Copyright terms: Public domain | W3C validator |