Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcne12g | GIF version |
Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) |
Ref | Expression |
---|---|
sbcne12g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceqg 3061 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
2 | 1 | notbid 657 | . 2 ⊢ (𝐴 ∈ 𝑉 → (¬ [𝐴 / 𝑥]𝐵 = 𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
3 | df-ne 2337 | . . . . 5 ⊢ (𝐵 ≠ 𝐶 ↔ ¬ 𝐵 = 𝐶) | |
4 | 3 | sbcbii 3010 | . . . 4 ⊢ ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ [𝐴 / 𝑥] ¬ 𝐵 = 𝐶) |
5 | sbcng 2991 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝐵 = 𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 = 𝐶)) | |
6 | 4, 5 | syl5bb 191 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 = 𝐶)) |
7 | df-ne 2337 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) | |
8 | 7 | a1i 9 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
9 | 6, 8 | bibi12d 234 | . 2 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶) ↔ (¬ [𝐴 / 𝑥]𝐵 = 𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶))) |
10 | 2, 9 | mpbird 166 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 [wsbc 2951 ⦋csb 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-v 2728 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |