ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcne12g GIF version

Theorem sbcne12g 3063
Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.)
Assertion
Ref Expression
sbcne12g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

Proof of Theorem sbcne12g
StepHypRef Expression
1 sbceqg 3061 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
21notbid 657 . 2 (𝐴𝑉 → (¬ [𝐴 / 𝑥]𝐵 = 𝐶 ↔ ¬ 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
3 df-ne 2337 . . . . 5 (𝐵𝐶 ↔ ¬ 𝐵 = 𝐶)
43sbcbii 3010 . . . 4 ([𝐴 / 𝑥]𝐵𝐶[𝐴 / 𝑥] ¬ 𝐵 = 𝐶)
5 sbcng 2991 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥] ¬ 𝐵 = 𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 = 𝐶))
64, 5syl5bb 191 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 = 𝐶))
7 df-ne 2337 . . . 4 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ ¬ 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
87a1i 9 . . 3 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ ¬ 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
96, 8bibi12d 234 . 2 (𝐴𝑉 → (([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) ↔ (¬ [𝐴 / 𝑥]𝐵 = 𝐶 ↔ ¬ 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)))
102, 9mpbird 166 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104   = wceq 1343  wcel 2136  wne 2336  [wsbc 2951  csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator