| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcne12g | GIF version | ||
| Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbcne12g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceqg 3117 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
| 2 | 1 | notbid 669 | . 2 ⊢ (𝐴 ∈ 𝑉 → (¬ [𝐴 / 𝑥]𝐵 = 𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
| 3 | df-ne 2379 | . . . . 5 ⊢ (𝐵 ≠ 𝐶 ↔ ¬ 𝐵 = 𝐶) | |
| 4 | 3 | sbcbii 3065 | . . . 4 ⊢ ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ [𝐴 / 𝑥] ¬ 𝐵 = 𝐶) |
| 5 | sbcng 3046 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝐵 = 𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 = 𝐶)) | |
| 6 | 4, 5 | bitrid 192 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 = 𝐶)) |
| 7 | df-ne 2379 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) | |
| 8 | 7 | a1i 9 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
| 9 | 6, 8 | bibi12d 235 | . 2 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶) ↔ (¬ [𝐴 / 𝑥]𝐵 = 𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶))) |
| 10 | 2, 9 | mpbird 167 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 [wsbc 3005 ⦋csb 3101 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-v 2778 df-sbc 3006 df-csb 3102 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |