ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcne12g GIF version

Theorem sbcne12g 3102
Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.)
Assertion
Ref Expression
sbcne12g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

Proof of Theorem sbcne12g
StepHypRef Expression
1 sbceqg 3100 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
21notbid 668 . 2 (𝐴𝑉 → (¬ [𝐴 / 𝑥]𝐵 = 𝐶 ↔ ¬ 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
3 df-ne 2368 . . . . 5 (𝐵𝐶 ↔ ¬ 𝐵 = 𝐶)
43sbcbii 3049 . . . 4 ([𝐴 / 𝑥]𝐵𝐶[𝐴 / 𝑥] ¬ 𝐵 = 𝐶)
5 sbcng 3030 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥] ¬ 𝐵 = 𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 = 𝐶))
64, 5bitrid 192 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 = 𝐶))
7 df-ne 2368 . . . 4 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ ¬ 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
87a1i 9 . . 3 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ ¬ 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
96, 8bibi12d 235 . 2 (𝐴𝑉 → (([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) ↔ (¬ [𝐴 / 𝑥]𝐵 = 𝐶 ↔ ¬ 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)))
102, 9mpbird 167 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1364  wcel 2167  wne 2367  [wsbc 2989  csb 3084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-sbc 2990  df-csb 3085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator