ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcnel12g Unicode version

Theorem sbcnel12g 3110
Description: Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.)
Assertion
Ref Expression
sbcnel12g  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e/  C  <->  [_ A  /  x ]_ B  e/  [_ A  /  x ]_ C ) )

Proof of Theorem sbcnel12g
StepHypRef Expression
1 df-nel 2472 . . . 4  |-  ( B  e/  C  <->  -.  B  e.  C )
21sbcbii 3058 . . 3  |-  ( [. A  /  x ]. B  e/  C  <->  [. A  /  x ].  -.  B  e.  C
)
32a1i 9 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e/  C  <->  [. A  /  x ].  -.  B  e.  C ) )
4 sbcng 3039 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ].  -.  B  e.  C  <->  -. 
[. A  /  x ]. B  e.  C
) )
5 sbcel12g 3108 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C ) )
65notbid 669 . . 3  |-  ( A  e.  V  ->  ( -.  [. A  /  x ]. B  e.  C  <->  -. 
[_ A  /  x ]_ B  e.  [_ A  /  x ]_ C ) )
7 df-nel 2472 . . 3  |-  ( [_ A  /  x ]_ B  e/  [_ A  /  x ]_ C  <->  -.  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C
)
86, 7bitr4di 198 . 2  |-  ( A  e.  V  ->  ( -.  [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e/  [_ A  /  x ]_ C ) )
93, 4, 83bitrd 214 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e/  C  <->  [_ A  /  x ]_ B  e/  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    e. wcel 2176    e/ wnel 2471   [.wsbc 2998   [_csb 3093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-nel 2472  df-v 2774  df-sbc 2999  df-csb 3094
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator