ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcnel12g Unicode version

Theorem sbcnel12g 3076
Description: Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.)
Assertion
Ref Expression
sbcnel12g  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e/  C  <->  [_ A  /  x ]_ B  e/  [_ A  /  x ]_ C ) )

Proof of Theorem sbcnel12g
StepHypRef Expression
1 df-nel 2443 . . . 4  |-  ( B  e/  C  <->  -.  B  e.  C )
21sbcbii 3024 . . 3  |-  ( [. A  /  x ]. B  e/  C  <->  [. A  /  x ].  -.  B  e.  C
)
32a1i 9 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e/  C  <->  [. A  /  x ].  -.  B  e.  C ) )
4 sbcng 3005 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ].  -.  B  e.  C  <->  -. 
[. A  /  x ]. B  e.  C
) )
5 sbcel12g 3074 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C ) )
65notbid 667 . . 3  |-  ( A  e.  V  ->  ( -.  [. A  /  x ]. B  e.  C  <->  -. 
[_ A  /  x ]_ B  e.  [_ A  /  x ]_ C ) )
7 df-nel 2443 . . 3  |-  ( [_ A  /  x ]_ B  e/  [_ A  /  x ]_ C  <->  -.  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C
)
86, 7bitr4di 198 . 2  |-  ( A  e.  V  ->  ( -.  [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e/  [_ A  /  x ]_ C ) )
93, 4, 83bitrd 214 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e/  C  <->  [_ A  /  x ]_ B  e/  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    e. wcel 2148    e/ wnel 2442   [.wsbc 2964   [_csb 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-nel 2443  df-v 2741  df-sbc 2965  df-csb 3060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator