ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcnel12g Unicode version

Theorem sbcnel12g 3097
Description: Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.)
Assertion
Ref Expression
sbcnel12g  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e/  C  <->  [_ A  /  x ]_ B  e/  [_ A  /  x ]_ C ) )

Proof of Theorem sbcnel12g
StepHypRef Expression
1 df-nel 2460 . . . 4  |-  ( B  e/  C  <->  -.  B  e.  C )
21sbcbii 3045 . . 3  |-  ( [. A  /  x ]. B  e/  C  <->  [. A  /  x ].  -.  B  e.  C
)
32a1i 9 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e/  C  <->  [. A  /  x ].  -.  B  e.  C ) )
4 sbcng 3026 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ].  -.  B  e.  C  <->  -. 
[. A  /  x ]. B  e.  C
) )
5 sbcel12g 3095 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C ) )
65notbid 668 . . 3  |-  ( A  e.  V  ->  ( -.  [. A  /  x ]. B  e.  C  <->  -. 
[_ A  /  x ]_ B  e.  [_ A  /  x ]_ C ) )
7 df-nel 2460 . . 3  |-  ( [_ A  /  x ]_ B  e/  [_ A  /  x ]_ C  <->  -.  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C
)
86, 7bitr4di 198 . 2  |-  ( A  e.  V  ->  ( -.  [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e/  [_ A  /  x ]_ C ) )
93, 4, 83bitrd 214 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e/  C  <->  [_ A  /  x ]_ B  e/  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    e. wcel 2164    e/ wnel 2459   [.wsbc 2985   [_csb 3080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-nel 2460  df-v 2762  df-sbc 2986  df-csb 3081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator