Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spc2ed | Unicode version |
Description: Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
Ref | Expression |
---|---|
spc2ed.x | |
spc2ed.y | |
spc2ed.1 |
Ref | Expression |
---|---|
spc2ed |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2740 | . . . 4 | |
2 | elisset 2740 | . . . 4 | |
3 | 1, 2 | anim12i 336 | . . 3 |
4 | eeanv 1920 | . . 3 | |
5 | 3, 4 | sylibr 133 | . 2 |
6 | nfv 1516 | . . . . 5 | |
7 | spc2ed.x | . . . . 5 | |
8 | 6, 7 | nfan 1553 | . . . 4 |
9 | nfv 1516 | . . . . . 6 | |
10 | spc2ed.y | . . . . . 6 | |
11 | 9, 10 | nfan 1553 | . . . . 5 |
12 | anass 399 | . . . . . . . 8 | |
13 | ancom 264 | . . . . . . . . 9 | |
14 | 13 | anbi1i 454 | . . . . . . . 8 |
15 | 12, 14 | bitr3i 185 | . . . . . . 7 |
16 | spc2ed.1 | . . . . . . . 8 | |
17 | 16 | biimparc 297 | . . . . . . 7 |
18 | 15, 17 | sylbir 134 | . . . . . 6 |
19 | 18 | ex 114 | . . . . 5 |
20 | 11, 19 | eximd 1600 | . . . 4 |
21 | 8, 20 | eximd 1600 | . . 3 |
22 | 21 | impancom 258 | . 2 |
23 | 5, 22 | sylan2 284 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wnf 1448 wex 1480 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: cnvoprab 6202 |
Copyright terms: Public domain | W3C validator |