| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > spc2ed | Unicode version | ||
| Description: Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.) | 
| Ref | Expression | 
|---|---|
| spc2ed.x | 
 | 
| spc2ed.y | 
 | 
| spc2ed.1 | 
 | 
| Ref | Expression | 
|---|---|
| spc2ed | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elisset 2777 | 
. . . 4
 | |
| 2 | elisset 2777 | 
. . . 4
 | |
| 3 | 1, 2 | anim12i 338 | 
. . 3
 | 
| 4 | eeanv 1951 | 
. . 3
 | |
| 5 | 3, 4 | sylibr 134 | 
. 2
 | 
| 6 | nfv 1542 | 
. . . . 5
 | |
| 7 | spc2ed.x | 
. . . . 5
 | |
| 8 | 6, 7 | nfan 1579 | 
. . . 4
 | 
| 9 | nfv 1542 | 
. . . . . 6
 | |
| 10 | spc2ed.y | 
. . . . . 6
 | |
| 11 | 9, 10 | nfan 1579 | 
. . . . 5
 | 
| 12 | anass 401 | 
. . . . . . . 8
 | |
| 13 | ancom 266 | 
. . . . . . . . 9
 | |
| 14 | 13 | anbi1i 458 | 
. . . . . . . 8
 | 
| 15 | 12, 14 | bitr3i 186 | 
. . . . . . 7
 | 
| 16 | spc2ed.1 | 
. . . . . . . 8
 | |
| 17 | 16 | biimparc 299 | 
. . . . . . 7
 | 
| 18 | 15, 17 | sylbir 135 | 
. . . . . 6
 | 
| 19 | 18 | ex 115 | 
. . . . 5
 | 
| 20 | 11, 19 | eximd 1626 | 
. . . 4
 | 
| 21 | 8, 20 | eximd 1626 | 
. . 3
 | 
| 22 | 21 | impancom 260 | 
. 2
 | 
| 23 | 5, 22 | sylan2 286 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: cnvoprab 6292 | 
| Copyright terms: Public domain | W3C validator |