| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spc2ed | Unicode version | ||
| Description: Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
| Ref | Expression |
|---|---|
| spc2ed.x |
|
| spc2ed.y |
|
| spc2ed.1 |
|
| Ref | Expression |
|---|---|
| spc2ed |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2777 |
. . . 4
| |
| 2 | elisset 2777 |
. . . 4
| |
| 3 | 1, 2 | anim12i 338 |
. . 3
|
| 4 | eeanv 1951 |
. . 3
| |
| 5 | 3, 4 | sylibr 134 |
. 2
|
| 6 | nfv 1542 |
. . . . 5
| |
| 7 | spc2ed.x |
. . . . 5
| |
| 8 | 6, 7 | nfan 1579 |
. . . 4
|
| 9 | nfv 1542 |
. . . . . 6
| |
| 10 | spc2ed.y |
. . . . . 6
| |
| 11 | 9, 10 | nfan 1579 |
. . . . 5
|
| 12 | anass 401 |
. . . . . . . 8
| |
| 13 | ancom 266 |
. . . . . . . . 9
| |
| 14 | 13 | anbi1i 458 |
. . . . . . . 8
|
| 15 | 12, 14 | bitr3i 186 |
. . . . . . 7
|
| 16 | spc2ed.1 |
. . . . . . . 8
| |
| 17 | 16 | biimparc 299 |
. . . . . . 7
|
| 18 | 15, 17 | sylbir 135 |
. . . . . 6
|
| 19 | 18 | ex 115 |
. . . . 5
|
| 20 | 11, 19 | eximd 1626 |
. . . 4
|
| 21 | 8, 20 | eximd 1626 |
. . 3
|
| 22 | 21 | impancom 260 |
. 2
|
| 23 | 5, 22 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: cnvoprab 6292 |
| Copyright terms: Public domain | W3C validator |