ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss0b GIF version

Theorem ss0b 3504
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ss0b (𝐴 ⊆ ∅ ↔ 𝐴 = ∅)

Proof of Theorem ss0b
StepHypRef Expression
1 0ss 3503 . . 3 ∅ ⊆ 𝐴
2 eqss 3212 . . 3 (𝐴 = ∅ ↔ (𝐴 ⊆ ∅ ∧ ∅ ⊆ 𝐴))
31, 2mpbiran2 944 . 2 (𝐴 = ∅ ↔ 𝐴 ⊆ ∅)
43bicomi 132 1 (𝐴 ⊆ ∅ ↔ 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wss 3170  c0 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-nul 3465
This theorem is referenced by:  ss0  3505  un00  3511  ssdisj  3521  pw0  3786  card0  7310  0nnei  14700
  Copyright terms: Public domain W3C validator