ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nnei Unicode version

Theorem 0nnei 14827
Description: The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.)
Assertion
Ref Expression
0nnei  |-  ( ( J  e.  Top  /\  S  =/=  (/) )  ->  -.  (/) 
e.  ( ( nei `  J ) `  S
) )

Proof of Theorem 0nnei
StepHypRef Expression
1 ssnei 14825 . . . . 5  |-  ( ( J  e.  Top  /\  (/) 
e.  ( ( nei `  J ) `  S
) )  ->  S  C_  (/) )
2 ss0b 3531 . . . . 5  |-  ( S 
C_  (/)  <->  S  =  (/) )
31, 2sylib 122 . . . 4  |-  ( ( J  e.  Top  /\  (/) 
e.  ( ( nei `  J ) `  S
) )  ->  S  =  (/) )
43ex 115 . . 3  |-  ( J  e.  Top  ->  ( (/) 
e.  ( ( nei `  J ) `  S
)  ->  S  =  (/) ) )
54necon3ad 2442 . 2  |-  ( J  e.  Top  ->  ( S  =/=  (/)  ->  -.  (/)  e.  ( ( nei `  J
) `  S )
) )
65imp 124 1  |-  ( ( J  e.  Top  /\  S  =/=  (/) )  ->  -.  (/) 
e.  ( ( nei `  J ) `  S
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    =/= wne 2400    C_ wss 3197   (/)c0 3491   ` cfv 5318   Topctop 14671   neicnei 14812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-top 14672  df-nei 14813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator