ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nnei Unicode version

Theorem 0nnei 13692
Description: The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.)
Assertion
Ref Expression
0nnei  |-  ( ( J  e.  Top  /\  S  =/=  (/) )  ->  -.  (/) 
e.  ( ( nei `  J ) `  S
) )

Proof of Theorem 0nnei
StepHypRef Expression
1 ssnei 13690 . . . . 5  |-  ( ( J  e.  Top  /\  (/) 
e.  ( ( nei `  J ) `  S
) )  ->  S  C_  (/) )
2 ss0b 3464 . . . . 5  |-  ( S 
C_  (/)  <->  S  =  (/) )
31, 2sylib 122 . . . 4  |-  ( ( J  e.  Top  /\  (/) 
e.  ( ( nei `  J ) `  S
) )  ->  S  =  (/) )
43ex 115 . . 3  |-  ( J  e.  Top  ->  ( (/) 
e.  ( ( nei `  J ) `  S
)  ->  S  =  (/) ) )
54necon3ad 2389 . 2  |-  ( J  e.  Top  ->  ( S  =/=  (/)  ->  -.  (/)  e.  ( ( nei `  J
) `  S )
) )
65imp 124 1  |-  ( ( J  e.  Top  /\  S  =/=  (/) )  ->  -.  (/) 
e.  ( ( nei `  J ) `  S
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    =/= wne 2347    C_ wss 3131   (/)c0 3424   ` cfv 5218   Topctop 13536   neicnei 13677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-top 13537  df-nei 13678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator