ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss1o0el1o Unicode version

Theorem ss1o0el1o 6983
Description: Reformulation of ss1o0el1 4231 using  1o instead of 
{ (/) }. (Contributed by BJ, 9-Aug-2024.)
Assertion
Ref Expression
ss1o0el1o  |-  ( A 
C_  1o  ->  ( (/)  e.  A  <->  A  =  1o ) )

Proof of Theorem ss1o0el1o
StepHypRef Expression
1 df1o2 6496 . . . 4  |-  1o  =  { (/) }
21eqcomi 2200 . . 3  |-  { (/) }  =  1o
32sseq2i 3211 . 2  |-  ( A 
C_  { (/) }  <->  A  C_  1o )
4 ss1o0el1 4231 . . 3  |-  ( A 
C_  { (/) }  ->  (
(/)  e.  A  <->  A  =  { (/) } ) )
52eqeq2i 2207 . . 3  |-  ( A  =  { (/) }  <->  A  =  1o )
64, 5bitrdi 196 . 2  |-  ( A 
C_  { (/) }  ->  (
(/)  e.  A  <->  A  =  1o ) )
73, 6sylbir 135 1  |-  ( A 
C_  1o  ->  ( (/)  e.  A  <->  A  =  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167    C_ wss 3157   (/)c0 3451   {csn 3623   1oc1o 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-nul 4160
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-sn 3629  df-suc 4407  df-1o 6483
This theorem is referenced by:  pw1dc1  6984
  Copyright terms: Public domain W3C validator