ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss1o0el1o Unicode version

Theorem ss1o0el1o 7012
Description: Reformulation of ss1o0el1 4242 using  1o instead of 
{ (/) }. (Contributed by BJ, 9-Aug-2024.)
Assertion
Ref Expression
ss1o0el1o  |-  ( A 
C_  1o  ->  ( (/)  e.  A  <->  A  =  1o ) )

Proof of Theorem ss1o0el1o
StepHypRef Expression
1 df1o2 6517 . . . 4  |-  1o  =  { (/) }
21eqcomi 2209 . . 3  |-  { (/) }  =  1o
32sseq2i 3220 . 2  |-  ( A 
C_  { (/) }  <->  A  C_  1o )
4 ss1o0el1 4242 . . 3  |-  ( A 
C_  { (/) }  ->  (
(/)  e.  A  <->  A  =  { (/) } ) )
52eqeq2i 2216 . . 3  |-  ( A  =  { (/) }  <->  A  =  1o )
64, 5bitrdi 196 . 2  |-  ( A 
C_  { (/) }  ->  (
(/)  e.  A  <->  A  =  1o ) )
73, 6sylbir 135 1  |-  ( A 
C_  1o  ->  ( (/)  e.  A  <->  A  =  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176    C_ wss 3166   (/)c0 3460   {csn 3633   1oc1o 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-nul 4171
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639  df-suc 4419  df-1o 6504
This theorem is referenced by:  pw1dc1  7013
  Copyright terms: Public domain W3C validator