ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss1o0el1 Unicode version

Theorem ss1o0el1 4257
Description: A subclass of  { (/) } contains the empty set if and only if it equals  { (/) }. (Contributed by BJ and Jim Kingdon, 9-Aug-2024.)
Assertion
Ref Expression
ss1o0el1  |-  ( A 
C_  { (/) }  ->  (
(/)  e.  A  <->  A  =  { (/) } ) )

Proof of Theorem ss1o0el1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex2 2793 . . . 4  |-  ( (/)  e.  A  ->  E. x  x  e.  A )
2 sssnm 3808 . . . 4  |-  ( E. x  x  e.  A  ->  ( A  C_  { (/) }  <-> 
A  =  { (/) } ) )
31, 2syl 14 . . 3  |-  ( (/)  e.  A  ->  ( A 
C_  { (/) }  <->  A  =  { (/) } ) )
43biimpcd 159 . 2  |-  ( A 
C_  { (/) }  ->  (
(/)  e.  A  ->  A  =  { (/) } ) )
5 0ex 4187 . . . 4  |-  (/)  e.  _V
65snid 3674 . . 3  |-  (/)  e.  { (/)
}
7 eleq2 2271 . . 3  |-  ( A  =  { (/) }  ->  (
(/)  e.  A  <->  (/)  e.  { (/)
} ) )
86, 7mpbiri 168 . 2  |-  ( A  =  { (/) }  ->  (/)  e.  A )
94, 8impbid1 142 1  |-  ( A 
C_  { (/) }  ->  (
(/)  e.  A  <->  A  =  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178    C_ wss 3174   (/)c0 3468   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-nul 4186
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649
This theorem is referenced by:  exmid01  4258  ss1o0el1o  7036
  Copyright terms: Public domain W3C validator