Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ss1o0el1 | Unicode version |
Description: A subclass of contains the empty set if and only if it equals . (Contributed by BJ and Jim Kingdon, 9-Aug-2024.) |
Ref | Expression |
---|---|
ss1o0el1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex2 2728 | . . . 4 | |
2 | sssnm 3717 | . . . 4 | |
3 | 1, 2 | syl 14 | . . 3 |
4 | 3 | biimpcd 158 | . 2 |
5 | 0ex 4091 | . . . 4 | |
6 | 5 | snid 3591 | . . 3 |
7 | eleq2 2221 | . . 3 | |
8 | 6, 7 | mpbiri 167 | . 2 |
9 | 4, 8 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 wex 1472 wcel 2128 wss 3102 c0 3394 csn 3560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-nul 4090 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-dif 3104 df-in 3108 df-ss 3115 df-nul 3395 df-sn 3566 |
This theorem is referenced by: exmid01 4158 ss1o0el1o 6850 |
Copyright terms: Public domain | W3C validator |