ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1dc1 Unicode version

Theorem pw1dc1 6972
Description: If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.)
Assertion
Ref Expression
pw1dc1  |-  (EXMID  <->  A. x  e.  ~P  1oDECID  x  =  1o )

Proof of Theorem pw1dc1
StepHypRef Expression
1 pw1dc0el 6969 . 2  |-  (EXMID  <->  A. x  e.  ~P  1oDECID  (/)  e.  x )
2 elpwi 3611 . . . . 5  |-  ( x  e.  ~P 1o  ->  x 
C_  1o )
3 ss1o0el1o 6971 . . . . 5  |-  ( x 
C_  1o  ->  ( (/)  e.  x  <->  x  =  1o ) )
42, 3syl 14 . . . 4  |-  ( x  e.  ~P 1o  ->  (
(/)  e.  x  <->  x  =  1o ) )
54dcbid 839 . . 3  |-  ( x  e.  ~P 1o  ->  (DECID  (/)  e.  x  <-> DECID  x  =  1o )
)
65ralbiia 2508 . 2  |-  ( A. x  e.  ~P  1oDECID  (/)  e.  x  <->  A. x  e.  ~P  1oDECID  x  =  1o )
71, 6bitri 184 1  |-  (EXMID  <->  A. x  e.  ~P  1oDECID  x  =  1o )
Colors of variables: wff set class
Syntax hints:    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3154   (/)c0 3447   ~Pcpw 3602  EXMIDwem 4224   1oc1o 6464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-nul 4156
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-exmid 4225  df-suc 4403  df-1o 6471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator