| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1dc1 | Unicode version | ||
| Description: If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| pw1dc1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1dc0el 7007 |
. 2
| |
| 2 | elpwi 3624 |
. . . . 5
| |
| 3 | ss1o0el1o 7009 |
. . . . 5
| |
| 4 | 2, 3 | syl 14 |
. . . 4
|
| 5 | 4 | dcbid 839 |
. . 3
|
| 6 | 5 | ralbiia 2519 |
. 2
|
| 7 | 1, 6 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-nul 4169 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-exmid 4238 df-suc 4417 df-1o 6501 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |