ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 Unicode version

Theorem df1o2 6488
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2  |-  1o  =  { (/) }

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6475 . 2  |-  1o  =  suc  (/)
2 suc0 4447 . 2  |-  suc  (/)  =  { (/)
}
31, 2eqtri 2217 1  |-  1o  =  { (/) }
Colors of variables: wff set class
Syntax hints:    = wceq 1364   (/)c0 3451   {csn 3623   suc csuc 4401   1oc1o 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3452  df-suc 4407  df-1o 6475
This theorem is referenced by:  df2o3  6489  df2o2  6490  1n0  6491  el1o  6496  dif1o  6497  ensn1  6856  en1  6859  map1  6872  xp1en  6883  exmidpw  6970  exmidpweq  6971  pw1fin  6972  pw1dc0el  6973  exmidpw2en  6974  ss1o0el1o  6975  unfiexmid  6980  0ct  7174  exmidonfinlem  7262  exmidfodomrlemr  7271  exmidfodomrlemrALT  7272  pw1on  7295  pw1dom2  7296  pw1ne1  7298  sucpw1nel3  7302  fihashen1  10893  ss1oel2o  15648  pwle2  15653  pwf1oexmid  15654  sbthom  15680
  Copyright terms: Public domain W3C validator