![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df1o2 | Unicode version |
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
df1o2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6471 |
. 2
![]() ![]() ![]() ![]() ![]() | |
2 | suc0 4443 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtri 2214 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-un 3158 df-nul 3448 df-suc 4403 df-1o 6471 |
This theorem is referenced by: df2o3 6485 df2o2 6486 1n0 6487 el1o 6492 dif1o 6493 ensn1 6852 en1 6855 map1 6868 xp1en 6879 exmidpw 6966 exmidpweq 6967 pw1fin 6968 pw1dc0el 6969 exmidpw2en 6970 ss1o0el1o 6971 unfiexmid 6976 0ct 7168 exmidonfinlem 7255 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 pw1on 7288 pw1dom2 7289 pw1ne1 7291 sucpw1nel3 7295 fihashen1 10873 ss1oel2o 15554 pwle2 15559 pwf1oexmid 15560 sbthom 15586 |
Copyright terms: Public domain | W3C validator |