ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 Unicode version

Theorem df1o2 6487
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2  |-  1o  =  { (/) }

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6474 . 2  |-  1o  =  suc  (/)
2 suc0 4446 . 2  |-  suc  (/)  =  { (/)
}
31, 2eqtri 2217 1  |-  1o  =  { (/) }
Colors of variables: wff set class
Syntax hints:    = wceq 1364   (/)c0 3450   {csn 3622   suc csuc 4400   1oc1o 6467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-suc 4406  df-1o 6474
This theorem is referenced by:  df2o3  6488  df2o2  6489  1n0  6490  el1o  6495  dif1o  6496  ensn1  6855  en1  6858  map1  6871  xp1en  6882  exmidpw  6969  exmidpweq  6970  pw1fin  6971  pw1dc0el  6972  exmidpw2en  6973  ss1o0el1o  6974  unfiexmid  6979  0ct  7173  exmidonfinlem  7260  exmidfodomrlemr  7269  exmidfodomrlemrALT  7270  pw1on  7293  pw1dom2  7294  pw1ne1  7296  sucpw1nel3  7300  fihashen1  10891  ss1oel2o  15638  pwle2  15643  pwf1oexmid  15644  sbthom  15670
  Copyright terms: Public domain W3C validator