ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 Unicode version

Theorem df1o2 6432
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2  |-  1o  =  { (/) }

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6419 . 2  |-  1o  =  suc  (/)
2 suc0 4413 . 2  |-  suc  (/)  =  { (/)
}
31, 2eqtri 2198 1  |-  1o  =  { (/) }
Colors of variables: wff set class
Syntax hints:    = wceq 1353   (/)c0 3424   {csn 3594   suc csuc 4367   1oc1o 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135  df-nul 3425  df-suc 4373  df-1o 6419
This theorem is referenced by:  df2o3  6433  df2o2  6434  1n0  6435  el1o  6440  dif1o  6441  ensn1  6798  en1  6801  map1  6814  xp1en  6825  exmidpw  6910  exmidpweq  6911  pw1fin  6912  pw1dc0el  6913  ss1o0el1o  6914  unfiexmid  6919  0ct  7108  exmidonfinlem  7194  exmidfodomrlemr  7203  exmidfodomrlemrALT  7204  pw1on  7227  pw1dom2  7228  pw1ne1  7230  sucpw1nel3  7234  fihashen1  10781  ss1oel2o  14828  pwle2  14833  pwf1oexmid  14834  sbthom  14859
  Copyright terms: Public domain W3C validator