ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 Unicode version

Theorem df1o2 6208
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2  |-  1o  =  { (/) }

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6195 . 2  |-  1o  =  suc  (/)
2 suc0 4247 . 2  |-  suc  (/)  =  { (/)
}
31, 2eqtri 2109 1  |-  1o  =  { (/) }
Colors of variables: wff set class
Syntax hints:    = wceq 1290   (/)c0 3287   {csn 3450   suc csuc 4201   1oc1o 6188
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-dif 3002  df-un 3004  df-nul 3288  df-suc 4207  df-1o 6195
This theorem is referenced by:  df2o3  6209  df2o2  6210  1n0  6211  el1o  6215  dif1o  6216  ensn1  6567  en1  6570  map1  6583  xp1en  6593  exmidpw  6678  unfiexmid  6682  0ct  6843  exmidfodomrlemr  6889  exmidfodomrlemrALT  6890  fihashen1  10268  ss1oel2o  12161  pw1dom2  12162
  Copyright terms: Public domain W3C validator