ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 Unicode version

Theorem df1o2 6326
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2  |-  1o  =  { (/) }

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6313 . 2  |-  1o  =  suc  (/)
2 suc0 4333 . 2  |-  suc  (/)  =  { (/)
}
31, 2eqtri 2160 1  |-  1o  =  { (/) }
Colors of variables: wff set class
Syntax hints:    = wceq 1331   (/)c0 3363   {csn 3527   suc csuc 4287   1oc1o 6306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-dif 3073  df-un 3075  df-nul 3364  df-suc 4293  df-1o 6313
This theorem is referenced by:  df2o3  6327  df2o2  6328  1n0  6329  el1o  6334  dif1o  6335  ensn1  6690  en1  6693  map1  6706  xp1en  6717  exmidpw  6802  unfiexmid  6806  0ct  6992  exmidonfinlem  7049  exmidfodomrlemr  7058  exmidfodomrlemrALT  7059  fihashen1  10552  ss1oel2o  13242  pw1dom2  13243  pwle2  13246  pwf1oexmid  13247  sbthom  13274
  Copyright terms: Public domain W3C validator