ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 Unicode version

Theorem df1o2 6482
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2  |-  1o  =  { (/) }

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6469 . 2  |-  1o  =  suc  (/)
2 suc0 4442 . 2  |-  suc  (/)  =  { (/)
}
31, 2eqtri 2214 1  |-  1o  =  { (/) }
Colors of variables: wff set class
Syntax hints:    = wceq 1364   (/)c0 3446   {csn 3618   suc csuc 4396   1oc1o 6462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-un 3157  df-nul 3447  df-suc 4402  df-1o 6469
This theorem is referenced by:  df2o3  6483  df2o2  6484  1n0  6485  el1o  6490  dif1o  6491  ensn1  6850  en1  6853  map1  6866  xp1en  6877  exmidpw  6964  exmidpweq  6965  pw1fin  6966  pw1dc0el  6967  exmidpw2en  6968  ss1o0el1o  6969  unfiexmid  6974  0ct  7166  exmidonfinlem  7253  exmidfodomrlemr  7262  exmidfodomrlemrALT  7263  pw1on  7286  pw1dom2  7287  pw1ne1  7289  sucpw1nel3  7293  fihashen1  10870  ss1oel2o  15484  pwle2  15489  pwf1oexmid  15490  sbthom  15516
  Copyright terms: Public domain W3C validator