| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df1o2 | Unicode version | ||
| Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| df1o2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6532 |
. 2
| |
| 2 | suc0 4479 |
. 2
| |
| 3 | 1, 2 | eqtri 2230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-dif 3179 df-un 3181 df-nul 3472 df-suc 4439 df-1o 6532 |
| This theorem is referenced by: df2o3 6546 df2o2 6547 1n0 6548 el1o 6553 dif1o 6554 ensn1 6918 en1 6921 map1 6935 xp1en 6950 exmidpw 7038 exmidpweq 7039 pw1fin 7040 pw1dc0el 7041 exmidpw2en 7042 ss1o0el1o 7043 unfiexmid 7048 0ct 7242 exmidonfinlem 7339 exmidfodomrlemr 7348 exmidfodomrlemrALT 7349 pw1m 7377 pw1on 7379 pw1dom2 7380 pw1ne1 7382 sucpw1nel3 7386 fihashen1 10988 ss1oel2o 16265 dom1o 16266 pwle2 16275 pwf1oexmid 16276 sbthom 16305 |
| Copyright terms: Public domain | W3C validator |