| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df1o2 | Unicode version | ||
| Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| df1o2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6475 |
. 2
| |
| 2 | suc0 4447 |
. 2
| |
| 3 | 1, 2 | eqtri 2217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-nul 3452 df-suc 4407 df-1o 6475 |
| This theorem is referenced by: df2o3 6489 df2o2 6490 1n0 6491 el1o 6496 dif1o 6497 ensn1 6856 en1 6859 map1 6872 xp1en 6883 exmidpw 6970 exmidpweq 6971 pw1fin 6972 pw1dc0el 6973 exmidpw2en 6974 ss1o0el1o 6975 unfiexmid 6980 0ct 7174 exmidonfinlem 7262 exmidfodomrlemr 7271 exmidfodomrlemrALT 7272 pw1on 7295 pw1dom2 7296 pw1ne1 7298 sucpw1nel3 7302 fihashen1 10893 ss1oel2o 15648 pwle2 15653 pwf1oexmid 15654 sbthom 15680 |
| Copyright terms: Public domain | W3C validator |