ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 Unicode version

Theorem df1o2 6141
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2  |-  1o  =  { (/) }

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6128 . 2  |-  1o  =  suc  (/)
2 suc0 4210 . 2  |-  suc  (/)  =  { (/)
}
31, 2eqtri 2105 1  |-  1o  =  { (/) }
Colors of variables: wff set class
Syntax hints:    = wceq 1287   (/)c0 3275   {csn 3430   suc csuc 4164   1oc1o 6121
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2617  df-dif 2990  df-un 2992  df-nul 3276  df-suc 4170  df-1o 6128
This theorem is referenced by:  df2o3  6142  df2o2  6143  1n0  6144  el1o  6148  dif1o  6149  ensn1  6458  en1  6461  map1  6474  xp1en  6484  exmidpw  6569  unfiexmid  6573  exmidfodomrlemr  6764  exmidfodomrlemrALT  6765  fihashen1  10095  ss1oel2o  11317  pw1dom2  11318
  Copyright terms: Public domain W3C validator