![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df1o2 | Unicode version |
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
df1o2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6441 |
. 2
![]() ![]() ![]() ![]() ![]() | |
2 | suc0 4429 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtri 2210 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-dif 3146 df-un 3148 df-nul 3438 df-suc 4389 df-1o 6441 |
This theorem is referenced by: df2o3 6455 df2o2 6456 1n0 6457 el1o 6462 dif1o 6463 ensn1 6822 en1 6825 map1 6838 xp1en 6849 exmidpw 6936 exmidpweq 6937 pw1fin 6938 pw1dc0el 6939 exmidpw2en 6940 ss1o0el1o 6941 unfiexmid 6946 0ct 7136 exmidonfinlem 7222 exmidfodomrlemr 7231 exmidfodomrlemrALT 7232 pw1on 7255 pw1dom2 7256 pw1ne1 7258 sucpw1nel3 7262 fihashen1 10811 ss1oel2o 15205 pwle2 15210 pwf1oexmid 15211 sbthom 15236 |
Copyright terms: Public domain | W3C validator |