ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 Unicode version

Theorem df1o2 6454
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2  |-  1o  =  { (/) }

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6441 . 2  |-  1o  =  suc  (/)
2 suc0 4429 . 2  |-  suc  (/)  =  { (/)
}
31, 2eqtri 2210 1  |-  1o  =  { (/) }
Colors of variables: wff set class
Syntax hints:    = wceq 1364   (/)c0 3437   {csn 3607   suc csuc 4383   1oc1o 6434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-dif 3146  df-un 3148  df-nul 3438  df-suc 4389  df-1o 6441
This theorem is referenced by:  df2o3  6455  df2o2  6456  1n0  6457  el1o  6462  dif1o  6463  ensn1  6822  en1  6825  map1  6838  xp1en  6849  exmidpw  6936  exmidpweq  6937  pw1fin  6938  pw1dc0el  6939  exmidpw2en  6940  ss1o0el1o  6941  unfiexmid  6946  0ct  7136  exmidonfinlem  7222  exmidfodomrlemr  7231  exmidfodomrlemrALT  7232  pw1on  7255  pw1dom2  7256  pw1ne1  7258  sucpw1nel3  7262  fihashen1  10811  ss1oel2o  15205  pwle2  15210  pwf1oexmid  15211  sbthom  15236
  Copyright terms: Public domain W3C validator