| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df1o2 | Unicode version | ||
| Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| df1o2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6568 |
. 2
| |
| 2 | suc0 4502 |
. 2
| |
| 3 | 1, 2 | eqtri 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-suc 4462 df-1o 6568 |
| This theorem is referenced by: df2o3 6583 df2o2 6584 1n0 6586 el1o 6591 dif1o 6592 ensn1 6956 en1 6959 map1 6973 dom1o 6985 xp1en 6990 exmidpw 7078 exmidpweq 7079 pw1fin 7080 pw1dc0el 7081 exmidpw2en 7082 ss1o0el1o 7083 unfiexmid 7088 0ct 7282 exmidonfinlem 7379 exmidfodomrlemr 7388 exmidfodomrlemrALT 7389 pw1m 7417 pw1on 7419 pw1dom2 7420 pw1ne1 7422 sucpw1nel3 7426 fihashen1 11029 ss1oel2o 16380 pw1ndom3lem 16382 pwle2 16393 pwf1oexmid 16394 sbthom 16424 |
| Copyright terms: Public domain | W3C validator |