ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss1o0el1o GIF version

Theorem ss1o0el1o 6969
Description: Reformulation of ss1o0el1 4226 using 1o instead of {∅}. (Contributed by BJ, 9-Aug-2024.)
Assertion
Ref Expression
ss1o0el1o (𝐴 ⊆ 1o → (∅ ∈ 𝐴𝐴 = 1o))

Proof of Theorem ss1o0el1o
StepHypRef Expression
1 df1o2 6482 . . . 4 1o = {∅}
21eqcomi 2197 . . 3 {∅} = 1o
32sseq2i 3206 . 2 (𝐴 ⊆ {∅} ↔ 𝐴 ⊆ 1o)
4 ss1o0el1 4226 . . 3 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = {∅}))
52eqeq2i 2204 . . 3 (𝐴 = {∅} ↔ 𝐴 = 1o)
64, 5bitrdi 196 . 2 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = 1o))
73, 6sylbir 135 1 (𝐴 ⊆ 1o → (∅ ∈ 𝐴𝐴 = 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  wss 3153  c0 3446  {csn 3618  1oc1o 6462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-nul 4155
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-suc 4402  df-1o 6469
This theorem is referenced by:  pw1dc1  6970
  Copyright terms: Public domain W3C validator