ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss1o0el1o GIF version

Theorem ss1o0el1o 6890
Description: Reformulation of ss1o0el1 4183 using 1o instead of {∅}. (Contributed by BJ, 9-Aug-2024.)
Assertion
Ref Expression
ss1o0el1o (𝐴 ⊆ 1o → (∅ ∈ 𝐴𝐴 = 1o))

Proof of Theorem ss1o0el1o
StepHypRef Expression
1 df1o2 6408 . . . 4 1o = {∅}
21eqcomi 2174 . . 3 {∅} = 1o
32sseq2i 3174 . 2 (𝐴 ⊆ {∅} ↔ 𝐴 ⊆ 1o)
4 ss1o0el1 4183 . . 3 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = {∅}))
52eqeq2i 2181 . . 3 (𝐴 = {∅} ↔ 𝐴 = 1o)
64, 5bitrdi 195 . 2 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = 1o))
73, 6sylbir 134 1 (𝐴 ⊆ 1o → (∅ ∈ 𝐴𝐴 = 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wcel 2141  wss 3121  c0 3414  {csn 3583  1oc1o 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-nul 4115
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-suc 4356  df-1o 6395
This theorem is referenced by:  pw1dc1  6891
  Copyright terms: Public domain W3C validator