ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss1o0el1o GIF version

Theorem ss1o0el1o 6974
Description: Reformulation of ss1o0el1 4230 using 1o instead of {∅}. (Contributed by BJ, 9-Aug-2024.)
Assertion
Ref Expression
ss1o0el1o (𝐴 ⊆ 1o → (∅ ∈ 𝐴𝐴 = 1o))

Proof of Theorem ss1o0el1o
StepHypRef Expression
1 df1o2 6487 . . . 4 1o = {∅}
21eqcomi 2200 . . 3 {∅} = 1o
32sseq2i 3210 . 2 (𝐴 ⊆ {∅} ↔ 𝐴 ⊆ 1o)
4 ss1o0el1 4230 . . 3 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = {∅}))
52eqeq2i 2207 . . 3 (𝐴 = {∅} ↔ 𝐴 = 1o)
64, 5bitrdi 196 . 2 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = 1o))
73, 6sylbir 135 1 (𝐴 ⊆ 1o → (∅ ∈ 𝐴𝐴 = 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  wss 3157  c0 3450  {csn 3622  1oc1o 6467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-nul 4159
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-suc 4406  df-1o 6474
This theorem is referenced by:  pw1dc1  6975
  Copyright terms: Public domain W3C validator