| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss1o0el1o | GIF version | ||
| Description: Reformulation of ss1o0el1 4240 using 1o instead of {∅}. (Contributed by BJ, 9-Aug-2024.) |
| Ref | Expression |
|---|---|
| ss1o0el1o | ⊢ (𝐴 ⊆ 1o → (∅ ∈ 𝐴 ↔ 𝐴 = 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6514 | . . . 4 ⊢ 1o = {∅} | |
| 2 | 1 | eqcomi 2208 | . . 3 ⊢ {∅} = 1o |
| 3 | 2 | sseq2i 3219 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ 𝐴 ⊆ 1o) |
| 4 | ss1o0el1 4240 | . . 3 ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = {∅})) | |
| 5 | 2 | eqeq2i 2215 | . . 3 ⊢ (𝐴 = {∅} ↔ 𝐴 = 1o) |
| 6 | 4, 5 | bitrdi 196 | . 2 ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = 1o)) |
| 7 | 3, 6 | sylbir 135 | 1 ⊢ (𝐴 ⊆ 1o → (∅ ∈ 𝐴 ↔ 𝐴 = 1o)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ⊆ wss 3165 ∅c0 3459 {csn 3632 1oc1o 6494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-nul 4169 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-sn 3638 df-suc 4417 df-1o 6501 |
| This theorem is referenced by: pw1dc1 7010 |
| Copyright terms: Public domain | W3C validator |