Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ss1o0el1o | GIF version |
Description: Reformulation of ss1o0el1 4176 using 1o instead of {∅}. (Contributed by BJ, 9-Aug-2024.) |
Ref | Expression |
---|---|
ss1o0el1o | ⊢ (𝐴 ⊆ 1o → (∅ ∈ 𝐴 ↔ 𝐴 = 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6397 | . . . 4 ⊢ 1o = {∅} | |
2 | 1 | eqcomi 2169 | . . 3 ⊢ {∅} = 1o |
3 | 2 | sseq2i 3169 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ 𝐴 ⊆ 1o) |
4 | ss1o0el1 4176 | . . 3 ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = {∅})) | |
5 | 2 | eqeq2i 2176 | . . 3 ⊢ (𝐴 = {∅} ↔ 𝐴 = 1o) |
6 | 4, 5 | bitrdi 195 | . 2 ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = 1o)) |
7 | 3, 6 | sylbir 134 | 1 ⊢ (𝐴 ⊆ 1o → (∅ ∈ 𝐴 ↔ 𝐴 = 1o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 ∅c0 3409 {csn 3576 1oc1o 6377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-suc 4349 df-1o 6384 |
This theorem is referenced by: pw1dc1 6879 |
Copyright terms: Public domain | W3C validator |