ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss1o0el1o GIF version

Theorem ss1o0el1o 7009
Description: Reformulation of ss1o0el1 4240 using 1o instead of {∅}. (Contributed by BJ, 9-Aug-2024.)
Assertion
Ref Expression
ss1o0el1o (𝐴 ⊆ 1o → (∅ ∈ 𝐴𝐴 = 1o))

Proof of Theorem ss1o0el1o
StepHypRef Expression
1 df1o2 6514 . . . 4 1o = {∅}
21eqcomi 2208 . . 3 {∅} = 1o
32sseq2i 3219 . 2 (𝐴 ⊆ {∅} ↔ 𝐴 ⊆ 1o)
4 ss1o0el1 4240 . . 3 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = {∅}))
52eqeq2i 2215 . . 3 (𝐴 = {∅} ↔ 𝐴 = 1o)
64, 5bitrdi 196 . 2 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = 1o))
73, 6sylbir 135 1 (𝐴 ⊆ 1o → (∅ ∈ 𝐴𝐴 = 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  wcel 2175  wss 3165  c0 3459  {csn 3632  1oc1o 6494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-nul 4169
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-sn 3638  df-suc 4417  df-1o 6501
This theorem is referenced by:  pw1dc1  7010
  Copyright terms: Public domain W3C validator