| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss1o0el1o | GIF version | ||
| Description: Reformulation of ss1o0el1 4281 using 1o instead of {∅}. (Contributed by BJ, 9-Aug-2024.) |
| Ref | Expression |
|---|---|
| ss1o0el1o | ⊢ (𝐴 ⊆ 1o → (∅ ∈ 𝐴 ↔ 𝐴 = 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6575 | . . . 4 ⊢ 1o = {∅} | |
| 2 | 1 | eqcomi 2233 | . . 3 ⊢ {∅} = 1o |
| 3 | 2 | sseq2i 3251 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ 𝐴 ⊆ 1o) |
| 4 | ss1o0el1 4281 | . . 3 ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = {∅})) | |
| 5 | 2 | eqeq2i 2240 | . . 3 ⊢ (𝐴 = {∅} ↔ 𝐴 = 1o) |
| 6 | 4, 5 | bitrdi 196 | . 2 ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = 1o)) |
| 7 | 3, 6 | sylbir 135 | 1 ⊢ (𝐴 ⊆ 1o → (∅ ∈ 𝐴 ↔ 𝐴 = 1o)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ∅c0 3491 {csn 3666 1oc1o 6555 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4210 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-suc 4462 df-1o 6562 |
| This theorem is referenced by: pw1dc1 7076 |
| Copyright terms: Public domain | W3C validator |