ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1dc0el Unicode version

Theorem pw1dc0el 6972
Description: Another equivalent of excluded middle, which is a mere reformulation of the definition. (Contributed by BJ, 9-Aug-2024.)
Assertion
Ref Expression
pw1dc0el  |-  (EXMID  <->  A. x  e.  ~P  1oDECID  (/)  e.  x )

Proof of Theorem pw1dc0el
StepHypRef Expression
1 df1o2 6487 . . . . . . 7  |-  1o  =  { (/) }
21eqcomi 2200 . . . . . 6  |-  { (/) }  =  1o
32sseq2i 3210 . . . . 5  |-  ( x 
C_  { (/) }  <->  x  C_  1o )
4 velpw 3612 . . . . 5  |-  ( x  e.  ~P 1o  <->  x  C_  1o )
53, 4bitr4i 187 . . . 4  |-  ( x 
C_  { (/) }  <->  x  e.  ~P 1o )
65imbi1i 238 . . 3  |-  ( ( x  C_  { (/) }  -> DECID  (/)  e.  x
)  <->  ( x  e. 
~P 1o  -> DECID  (/)  e.  x ) )
76albii 1484 . 2  |-  ( A. x ( x  C_  {
(/) }  -> DECID  (/)  e.  x )  <->  A. x ( x  e. 
~P 1o  -> DECID  (/)  e.  x ) )
8 df-exmid 4228 . 2  |-  (EXMID  <->  A. x
( x  C_  { (/) }  -> DECID  (/) 
e.  x ) )
9 df-ral 2480 . 2  |-  ( A. x  e.  ~P  1oDECID  (/)  e.  x  <->  A. x ( x  e. 
~P 1o  -> DECID  (/)  e.  x ) )
107, 8, 93bitr4i 212 1  |-  (EXMID  <->  A. x  e.  ~P  1oDECID  (/)  e.  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105  DECID wdc 835   A.wal 1362    e. wcel 2167   A.wral 2475    C_ wss 3157   (/)c0 3450   ~Pcpw 3605   {csn 3622  EXMIDwem 4227   1oc1o 6467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-exmid 4228  df-suc 4406  df-1o 6474
This theorem is referenced by:  pw1dc1  6975
  Copyright terms: Public domain W3C validator