ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2abdv Unicode version

Theorem ss2abdv 3252
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.)
Hypothesis
Ref Expression
ss2abdv.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
ss2abdv  |-  ( ph  ->  { x  |  ps }  C_  { x  |  ch } )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)

Proof of Theorem ss2abdv
StepHypRef Expression
1 ss2abdv.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21alrimiv 1885 . 2  |-  ( ph  ->  A. x ( ps 
->  ch ) )
3 ss2ab 3247 . 2  |-  ( { x  |  ps }  C_ 
{ x  |  ch } 
<-> 
A. x ( ps 
->  ch ) )
42, 3sylibr 134 1  |-  ( ph  ->  { x  |  ps }  C_  { x  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362   {cab 2179    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3159  df-ss 3166
This theorem is referenced by:  ssopab2  4306  iotass  5232  imadif  5334  imain  5336  opabbrex  5962  ssoprab2  5974  tfr1onlemssrecs  6392  tfrcllemssrecs  6405  ss2ixp  6765  ptex  12875  plyss  14884
  Copyright terms: Public domain W3C validator