ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2abdv Unicode version

Theorem ss2abdv 3230
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.)
Hypothesis
Ref Expression
ss2abdv.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
ss2abdv  |-  ( ph  ->  { x  |  ps }  C_  { x  |  ch } )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)

Proof of Theorem ss2abdv
StepHypRef Expression
1 ss2abdv.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21alrimiv 1874 . 2  |-  ( ph  ->  A. x ( ps 
->  ch ) )
3 ss2ab 3225 . 2  |-  ( { x  |  ps }  C_ 
{ x  |  ch } 
<-> 
A. x ( ps 
->  ch ) )
42, 3sylibr 134 1  |-  ( ph  ->  { x  |  ps }  C_  { x  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351   {cab 2163    C_ wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-in 3137  df-ss 3144
This theorem is referenced by:  ssopab2  4277  iotass  5197  imadif  5298  imain  5300  opabbrex  5921  ssoprab2  5933  tfr1onlemssrecs  6342  tfrcllemssrecs  6355  ss2ixp  6713  ptex  12718
  Copyright terms: Public domain W3C validator