Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > endom | Unicode version |
Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
Ref | Expression |
---|---|
endom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enssdom 6736 | . 2 | |
2 | 1 | ssbri 4031 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 class class class wbr 3987 cen 6712 cdom 6713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-xp 4615 df-rel 4616 df-f1o 5203 df-en 6715 df-dom 6716 |
This theorem is referenced by: domrefg 6741 endomtr 6764 domentr 6765 nnct 10378 hashennnuni 10700 ctinf 12372 |
Copyright terms: Public domain | W3C validator |