ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endom Unicode version

Theorem endom 6665
Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.)
Assertion
Ref Expression
endom  |-  ( A 
~~  B  ->  A  ~<_  B )

Proof of Theorem endom
StepHypRef Expression
1 enssdom 6664 . 2  |-  ~~  C_  ~<_
21ssbri 3980 1  |-  ( A 
~~  B  ->  A  ~<_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   class class class wbr 3937    ~~ cen 6640    ~<_ cdom 6641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-xp 4553  df-rel 4554  df-f1o 5138  df-en 6643  df-dom 6644
This theorem is referenced by:  domrefg  6669  endomtr  6692  domentr  6693  nnct  10239  hashennnuni  10557  ctinf  11979
  Copyright terms: Public domain W3C validator