Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > swoord2 | Unicode version |
Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.) |
Ref | Expression |
---|---|
swoer.1 | |
swoer.2 | |
swoer.3 | |
swoord.4 | |
swoord.5 | |
swoord.6 |
Ref | Expression |
---|---|
swoord2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 | |
2 | swoord.5 | . . . 4 | |
3 | swoord.6 | . . . . 5 | |
4 | swoer.1 | . . . . . . 7 | |
5 | difss 3248 | . . . . . . 7 | |
6 | 4, 5 | eqsstri 3174 | . . . . . 6 |
7 | 6 | ssbri 4026 | . . . . 5 |
8 | df-br 3983 | . . . . . 6 | |
9 | opelxp1 4638 | . . . . . 6 | |
10 | 8, 9 | sylbi 120 | . . . . 5 |
11 | 3, 7, 10 | 3syl 17 | . . . 4 |
12 | swoord.4 | . . . 4 | |
13 | swoer.3 | . . . . 5 | |
14 | 13 | swopolem 4283 | . . . 4 |
15 | 1, 2, 11, 12, 14 | syl13anc 1230 | . . 3 |
16 | idd 21 | . . . 4 | |
17 | 4 | brdifun 6528 | . . . . . . . 8 |
18 | 11, 12, 17 | syl2anc 409 | . . . . . . 7 |
19 | 3, 18 | mpbid 146 | . . . . . 6 |
20 | olc 701 | . . . . . 6 | |
21 | 19, 20 | nsyl 618 | . . . . 5 |
22 | 21 | pm2.21d 609 | . . . 4 |
23 | 16, 22 | jaod 707 | . . 3 |
24 | 15, 23 | syld 45 | . 2 |
25 | 13 | swopolem 4283 | . . . 4 |
26 | 1, 2, 12, 11, 25 | syl13anc 1230 | . . 3 |
27 | idd 21 | . . . 4 | |
28 | orc 702 | . . . . . 6 | |
29 | 19, 28 | nsyl 618 | . . . . 5 |
30 | 29 | pm2.21d 609 | . . . 4 |
31 | 27, 30 | jaod 707 | . . 3 |
32 | 26, 31 | syld 45 | . 2 |
33 | 24, 32 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 968 wceq 1343 wcel 2136 cdif 3113 cun 3114 cop 3579 class class class wbr 3982 cxp 4602 ccnv 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |