ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swoord2 Unicode version

Theorem swoord2 6467
Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypotheses
Ref Expression
swoer.1  |-  R  =  ( ( X  X.  X )  \  (  .<  u.  `'  .<  )
)
swoer.2  |-  ( (
ph  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y  .<  z  ->  -.  z  .<  y
) )
swoer.3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x  .<  y  ->  ( x  .<  z  \/  z  .<  y ) ) )
swoord.4  |-  ( ph  ->  B  e.  X )
swoord.5  |-  ( ph  ->  C  e.  X )
swoord.6  |-  ( ph  ->  A R B )
Assertion
Ref Expression
swoord2  |-  ( ph  ->  ( C  .<  A  <->  C  .<  B ) )
Distinct variable groups:    x, y, z, 
.<    x, A, y, z   
x, B, y, z   
x, C, y, z    ph, x, y, z    x, X, y, z
Allowed substitution hints:    R( x, y, z)

Proof of Theorem swoord2
StepHypRef Expression
1 id 19 . . . 4  |-  ( ph  ->  ph )
2 swoord.5 . . . 4  |-  ( ph  ->  C  e.  X )
3 swoord.6 . . . . 5  |-  ( ph  ->  A R B )
4 swoer.1 . . . . . . 7  |-  R  =  ( ( X  X.  X )  \  (  .<  u.  `'  .<  )
)
5 difss 3207 . . . . . . 7  |-  ( ( X  X.  X ) 
\  (  .<  u.  `'  .<  ) )  C_  ( X  X.  X )
64, 5eqsstri 3134 . . . . . 6  |-  R  C_  ( X  X.  X
)
76ssbri 3980 . . . . 5  |-  ( A R B  ->  A
( X  X.  X
) B )
8 df-br 3938 . . . . . 6  |-  ( A ( X  X.  X
) B  <->  <. A ,  B >.  e.  ( X  X.  X ) )
9 opelxp1 4581 . . . . . 6  |-  ( <. A ,  B >.  e.  ( X  X.  X
)  ->  A  e.  X )
108, 9sylbi 120 . . . . 5  |-  ( A ( X  X.  X
) B  ->  A  e.  X )
113, 7, 103syl 17 . . . 4  |-  ( ph  ->  A  e.  X )
12 swoord.4 . . . 4  |-  ( ph  ->  B  e.  X )
13 swoer.3 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x  .<  y  ->  ( x  .<  z  \/  z  .<  y ) ) )
1413swopolem 4235 . . . 4  |-  ( (
ph  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( C  .<  A  -> 
( C  .<  B  \/  B  .<  A ) ) )
151, 2, 11, 12, 14syl13anc 1219 . . 3  |-  ( ph  ->  ( C  .<  A  -> 
( C  .<  B  \/  B  .<  A ) ) )
16 idd 21 . . . 4  |-  ( ph  ->  ( C  .<  B  ->  C  .<  B ) )
174brdifun 6464 . . . . . . . 8  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A R B  <->  -.  ( A  .<  B  \/  B  .<  A ) ) )
1811, 12, 17syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( A R B  <->  -.  ( A  .<  B  \/  B  .<  A ) ) )
193, 18mpbid 146 . . . . . 6  |-  ( ph  ->  -.  ( A  .<  B  \/  B  .<  A ) )
20 olc 701 . . . . . 6  |-  ( B 
.<  A  ->  ( A 
.<  B  \/  B  .<  A ) )
2119, 20nsyl 618 . . . . 5  |-  ( ph  ->  -.  B  .<  A )
2221pm2.21d 609 . . . 4  |-  ( ph  ->  ( B  .<  A  ->  C  .<  B ) )
2316, 22jaod 707 . . 3  |-  ( ph  ->  ( ( C  .<  B  \/  B  .<  A )  ->  C  .<  B ) )
2415, 23syld 45 . 2  |-  ( ph  ->  ( C  .<  A  ->  C  .<  B ) )
2513swopolem 4235 . . . 4  |-  ( (
ph  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X ) )  -> 
( C  .<  B  -> 
( C  .<  A  \/  A  .<  B ) ) )
261, 2, 12, 11, 25syl13anc 1219 . . 3  |-  ( ph  ->  ( C  .<  B  -> 
( C  .<  A  \/  A  .<  B ) ) )
27 idd 21 . . . 4  |-  ( ph  ->  ( C  .<  A  ->  C  .<  A ) )
28 orc 702 . . . . . 6  |-  ( A 
.<  B  ->  ( A 
.<  B  \/  B  .<  A ) )
2919, 28nsyl 618 . . . . 5  |-  ( ph  ->  -.  A  .<  B )
3029pm2.21d 609 . . . 4  |-  ( ph  ->  ( A  .<  B  ->  C  .<  A ) )
3127, 30jaod 707 . . 3  |-  ( ph  ->  ( ( C  .<  A  \/  A  .<  B )  ->  C  .<  A ) )
3226, 31syld 45 . 2  |-  ( ph  ->  ( C  .<  B  ->  C  .<  A ) )
3324, 32impbid 128 1  |-  ( ph  ->  ( C  .<  A  <->  C  .<  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1332    e. wcel 1481    \ cdif 3073    u. cun 3074   <.cop 3535   class class class wbr 3937    X. cxp 4545   `'ccnv 4546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-xp 4553  df-cnv 4555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator