Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > swoord2 | Unicode version |
Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.) |
Ref | Expression |
---|---|
swoer.1 | |
swoer.2 | |
swoer.3 | |
swoord.4 | |
swoord.5 | |
swoord.6 |
Ref | Expression |
---|---|
swoord2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 | |
2 | swoord.5 | . . . 4 | |
3 | swoord.6 | . . . . 5 | |
4 | swoer.1 | . . . . . . 7 | |
5 | difss 3253 | . . . . . . 7 | |
6 | 4, 5 | eqsstri 3179 | . . . . . 6 |
7 | 6 | ssbri 4033 | . . . . 5 |
8 | df-br 3990 | . . . . . 6 | |
9 | opelxp1 4645 | . . . . . 6 | |
10 | 8, 9 | sylbi 120 | . . . . 5 |
11 | 3, 7, 10 | 3syl 17 | . . . 4 |
12 | swoord.4 | . . . 4 | |
13 | swoer.3 | . . . . 5 | |
14 | 13 | swopolem 4290 | . . . 4 |
15 | 1, 2, 11, 12, 14 | syl13anc 1235 | . . 3 |
16 | idd 21 | . . . 4 | |
17 | 4 | brdifun 6540 | . . . . . . . 8 |
18 | 11, 12, 17 | syl2anc 409 | . . . . . . 7 |
19 | 3, 18 | mpbid 146 | . . . . . 6 |
20 | olc 706 | . . . . . 6 | |
21 | 19, 20 | nsyl 623 | . . . . 5 |
22 | 21 | pm2.21d 614 | . . . 4 |
23 | 16, 22 | jaod 712 | . . 3 |
24 | 15, 23 | syld 45 | . 2 |
25 | 13 | swopolem 4290 | . . . 4 |
26 | 1, 2, 12, 11, 25 | syl13anc 1235 | . . 3 |
27 | idd 21 | . . . 4 | |
28 | orc 707 | . . . . . 6 | |
29 | 19, 28 | nsyl 623 | . . . . 5 |
30 | 29 | pm2.21d 614 | . . . 4 |
31 | 27, 30 | jaod 712 | . . 3 |
32 | 26, 31 | syld 45 | . 2 |
33 | 24, 32 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wcel 2141 cdif 3118 cun 3119 cop 3586 class class class wbr 3989 cxp 4609 ccnv 4610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |