| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > swoord2 | Unicode version | ||
| Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| swoer.1 |
|
| swoer.2 |
|
| swoer.3 |
|
| swoord.4 |
|
| swoord.5 |
|
| swoord.6 |
|
| Ref | Expression |
|---|---|
| swoord2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . 4
| |
| 2 | swoord.5 |
. . . 4
| |
| 3 | swoord.6 |
. . . . 5
| |
| 4 | swoer.1 |
. . . . . . 7
| |
| 5 | difss 3307 |
. . . . . . 7
| |
| 6 | 4, 5 | eqsstri 3233 |
. . . . . 6
|
| 7 | 6 | ssbri 4104 |
. . . . 5
|
| 8 | df-br 4060 |
. . . . . 6
| |
| 9 | opelxp1 4727 |
. . . . . 6
| |
| 10 | 8, 9 | sylbi 121 |
. . . . 5
|
| 11 | 3, 7, 10 | 3syl 17 |
. . . 4
|
| 12 | swoord.4 |
. . . 4
| |
| 13 | swoer.3 |
. . . . 5
| |
| 14 | 13 | swopolem 4370 |
. . . 4
|
| 15 | 1, 2, 11, 12, 14 | syl13anc 1252 |
. . 3
|
| 16 | idd 21 |
. . . 4
| |
| 17 | 4 | brdifun 6670 |
. . . . . . . 8
|
| 18 | 11, 12, 17 | syl2anc 411 |
. . . . . . 7
|
| 19 | 3, 18 | mpbid 147 |
. . . . . 6
|
| 20 | olc 713 |
. . . . . 6
| |
| 21 | 19, 20 | nsyl 629 |
. . . . 5
|
| 22 | 21 | pm2.21d 620 |
. . . 4
|
| 23 | 16, 22 | jaod 719 |
. . 3
|
| 24 | 15, 23 | syld 45 |
. 2
|
| 25 | 13 | swopolem 4370 |
. . . 4
|
| 26 | 1, 2, 12, 11, 25 | syl13anc 1252 |
. . 3
|
| 27 | idd 21 |
. . . 4
| |
| 28 | orc 714 |
. . . . . 6
| |
| 29 | 19, 28 | nsyl 629 |
. . . . 5
|
| 30 | 29 | pm2.21d 620 |
. . . 4
|
| 31 | 27, 30 | jaod 719 |
. . 3
|
| 32 | 26, 31 | syld 45 |
. 2
|
| 33 | 24, 32 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |