| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > swoer | Unicode version | ||
| Description: Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| swoer.1 | 
 | 
| swoer.2 | 
 | 
| swoer.3 | 
 | 
| Ref | Expression | 
|---|---|
| swoer | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | swoer.1 | 
. . . . 5
 | |
| 2 | difss 3289 | 
. . . . 5
 | |
| 3 | 1, 2 | eqsstri 3215 | 
. . . 4
 | 
| 4 | relxp 4772 | 
. . . 4
 | |
| 5 | relss 4750 | 
. . . 4
 | |
| 6 | 3, 4, 5 | mp2 16 | 
. . 3
 | 
| 7 | 6 | a1i 9 | 
. 2
 | 
| 8 | simpr 110 | 
. . 3
 | |
| 9 | orcom 729 | 
. . . . . 6
 | |
| 10 | 9 | a1i 9 | 
. . . . 5
 | 
| 11 | 10 | notbid 668 | 
. . . 4
 | 
| 12 | 3 | ssbri 4077 | 
. . . . . . 7
 | 
| 13 | 12 | adantl 277 | 
. . . . . 6
 | 
| 14 | brxp 4694 | 
. . . . . 6
 | |
| 15 | 13, 14 | sylib 122 | 
. . . . 5
 | 
| 16 | 1 | brdifun 6619 | 
. . . . 5
 | 
| 17 | 15, 16 | syl 14 | 
. . . 4
 | 
| 18 | 15 | simprd 114 | 
. . . . 5
 | 
| 19 | 15 | simpld 112 | 
. . . . 5
 | 
| 20 | 1 | brdifun 6619 | 
. . . . 5
 | 
| 21 | 18, 19, 20 | syl2anc 411 | 
. . . 4
 | 
| 22 | 11, 17, 21 | 3bitr4d 220 | 
. . 3
 | 
| 23 | 8, 22 | mpbid 147 | 
. 2
 | 
| 24 | simprl 529 | 
. . . . 5
 | |
| 25 | 12 | ad2antrl 490 | 
. . . . . . 7
 | 
| 26 | 14 | simplbi 274 | 
. . . . . . 7
 | 
| 27 | 25, 26 | syl 14 | 
. . . . . 6
 | 
| 28 | 14 | simprbi 275 | 
. . . . . . 7
 | 
| 29 | 25, 28 | syl 14 | 
. . . . . 6
 | 
| 30 | 27, 29, 16 | syl2anc 411 | 
. . . . 5
 | 
| 31 | 24, 30 | mpbid 147 | 
. . . 4
 | 
| 32 | simprr 531 | 
. . . . 5
 | |
| 33 | 3 | brel 4715 | 
. . . . . . . 8
 | 
| 34 | 33 | simprd 114 | 
. . . . . . 7
 | 
| 35 | 32, 34 | syl 14 | 
. . . . . 6
 | 
| 36 | 1 | brdifun 6619 | 
. . . . . 6
 | 
| 37 | 29, 35, 36 | syl2anc 411 | 
. . . . 5
 | 
| 38 | 32, 37 | mpbid 147 | 
. . . 4
 | 
| 39 | simpl 109 | 
. . . . . . 7
 | |
| 40 | swoer.3 | 
. . . . . . . 8
 | |
| 41 | 40 | swopolem 4340 | 
. . . . . . 7
 | 
| 42 | 39, 27, 35, 29, 41 | syl13anc 1251 | 
. . . . . 6
 | 
| 43 | 40 | swopolem 4340 | 
. . . . . . . 8
 | 
| 44 | 39, 35, 27, 29, 43 | syl13anc 1251 | 
. . . . . . 7
 | 
| 45 | orcom 729 | 
. . . . . . 7
 | |
| 46 | 44, 45 | imbitrrdi 162 | 
. . . . . 6
 | 
| 47 | 42, 46 | orim12d 787 | 
. . . . 5
 | 
| 48 | or4 772 | 
. . . . 5
 | |
| 49 | 47, 48 | imbitrdi 161 | 
. . . 4
 | 
| 50 | 31, 38, 49 | mtord 784 | 
. . 3
 | 
| 51 | 1 | brdifun 6619 | 
. . . 4
 | 
| 52 | 27, 35, 51 | syl2anc 411 | 
. . 3
 | 
| 53 | 50, 52 | mpbird 167 | 
. 2
 | 
| 54 | swoer.2 | 
. . . . . . 7
 | |
| 55 | 54, 40 | swopo 4341 | 
. . . . . 6
 | 
| 56 | poirr 4342 | 
. . . . . 6
 | |
| 57 | 55, 56 | sylan 283 | 
. . . . 5
 | 
| 58 | pm1.2 757 | 
. . . . 5
 | |
| 59 | 57, 58 | nsyl 629 | 
. . . 4
 | 
| 60 | simpr 110 | 
. . . . 5
 | |
| 61 | 1 | brdifun 6619 | 
. . . . 5
 | 
| 62 | 60, 60, 61 | syl2anc 411 | 
. . . 4
 | 
| 63 | 59, 62 | mpbird 167 | 
. . 3
 | 
| 64 | 3 | ssbri 4077 | 
. . . . 5
 | 
| 65 | brxp 4694 | 
. . . . . 6
 | |
| 66 | 65 | simplbi 274 | 
. . . . 5
 | 
| 67 | 64, 66 | syl 14 | 
. . . 4
 | 
| 68 | 67 | adantl 277 | 
. . 3
 | 
| 69 | 63, 68 | impbida 596 | 
. 2
 | 
| 70 | 7, 23, 53, 69 | iserd 6618 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-po 4331 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-er 6592 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |