Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > swoer | Unicode version |
Description: Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
swoer.1 | |
swoer.2 | |
swoer.3 |
Ref | Expression |
---|---|
swoer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swoer.1 | . . . . 5 | |
2 | difss 3248 | . . . . 5 | |
3 | 1, 2 | eqsstri 3174 | . . . 4 |
4 | relxp 4713 | . . . 4 | |
5 | relss 4691 | . . . 4 | |
6 | 3, 4, 5 | mp2 16 | . . 3 |
7 | 6 | a1i 9 | . 2 |
8 | simpr 109 | . . 3 | |
9 | orcom 718 | . . . . . 6 | |
10 | 9 | a1i 9 | . . . . 5 |
11 | 10 | notbid 657 | . . . 4 |
12 | 3 | ssbri 4026 | . . . . . . 7 |
13 | 12 | adantl 275 | . . . . . 6 |
14 | brxp 4635 | . . . . . 6 | |
15 | 13, 14 | sylib 121 | . . . . 5 |
16 | 1 | brdifun 6528 | . . . . 5 |
17 | 15, 16 | syl 14 | . . . 4 |
18 | 15 | simprd 113 | . . . . 5 |
19 | 15 | simpld 111 | . . . . 5 |
20 | 1 | brdifun 6528 | . . . . 5 |
21 | 18, 19, 20 | syl2anc 409 | . . . 4 |
22 | 11, 17, 21 | 3bitr4d 219 | . . 3 |
23 | 8, 22 | mpbid 146 | . 2 |
24 | simprl 521 | . . . . 5 | |
25 | 12 | ad2antrl 482 | . . . . . . 7 |
26 | 14 | simplbi 272 | . . . . . . 7 |
27 | 25, 26 | syl 14 | . . . . . 6 |
28 | 14 | simprbi 273 | . . . . . . 7 |
29 | 25, 28 | syl 14 | . . . . . 6 |
30 | 27, 29, 16 | syl2anc 409 | . . . . 5 |
31 | 24, 30 | mpbid 146 | . . . 4 |
32 | simprr 522 | . . . . 5 | |
33 | 3 | brel 4656 | . . . . . . . 8 |
34 | 33 | simprd 113 | . . . . . . 7 |
35 | 32, 34 | syl 14 | . . . . . 6 |
36 | 1 | brdifun 6528 | . . . . . 6 |
37 | 29, 35, 36 | syl2anc 409 | . . . . 5 |
38 | 32, 37 | mpbid 146 | . . . 4 |
39 | simpl 108 | . . . . . . 7 | |
40 | swoer.3 | . . . . . . . 8 | |
41 | 40 | swopolem 4283 | . . . . . . 7 |
42 | 39, 27, 35, 29, 41 | syl13anc 1230 | . . . . . 6 |
43 | 40 | swopolem 4283 | . . . . . . . 8 |
44 | 39, 35, 27, 29, 43 | syl13anc 1230 | . . . . . . 7 |
45 | orcom 718 | . . . . . . 7 | |
46 | 44, 45 | syl6ibr 161 | . . . . . 6 |
47 | 42, 46 | orim12d 776 | . . . . 5 |
48 | or4 761 | . . . . 5 | |
49 | 47, 48 | syl6ib 160 | . . . 4 |
50 | 31, 38, 49 | mtord 773 | . . 3 |
51 | 1 | brdifun 6528 | . . . 4 |
52 | 27, 35, 51 | syl2anc 409 | . . 3 |
53 | 50, 52 | mpbird 166 | . 2 |
54 | swoer.2 | . . . . . . 7 | |
55 | 54, 40 | swopo 4284 | . . . . . 6 |
56 | poirr 4285 | . . . . . 6 | |
57 | 55, 56 | sylan 281 | . . . . 5 |
58 | pm1.2 746 | . . . . 5 | |
59 | 57, 58 | nsyl 618 | . . . 4 |
60 | simpr 109 | . . . . 5 | |
61 | 1 | brdifun 6528 | . . . . 5 |
62 | 60, 60, 61 | syl2anc 409 | . . . 4 |
63 | 59, 62 | mpbird 166 | . . 3 |
64 | 3 | ssbri 4026 | . . . . 5 |
65 | brxp 4635 | . . . . . 6 | |
66 | 65 | simplbi 272 | . . . . 5 |
67 | 64, 66 | syl 14 | . . . 4 |
68 | 67 | adantl 275 | . . 3 |
69 | 63, 68 | impbida 586 | . 2 |
70 | 7, 23, 53, 69 | iserd 6527 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 968 wceq 1343 wcel 2136 cdif 3113 cun 3114 wss 3116 class class class wbr 3982 wpo 4272 cxp 4602 ccnv 4603 wrel 4609 wer 6498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-po 4274 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-er 6501 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |