| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > swoer | Unicode version | ||
| Description: Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| swoer.1 |
|
| swoer.2 |
|
| swoer.3 |
|
| Ref | Expression |
|---|---|
| swoer |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swoer.1 |
. . . . 5
| |
| 2 | difss 3290 |
. . . . 5
| |
| 3 | 1, 2 | eqsstri 3216 |
. . . 4
|
| 4 | relxp 4773 |
. . . 4
| |
| 5 | relss 4751 |
. . . 4
| |
| 6 | 3, 4, 5 | mp2 16 |
. . 3
|
| 7 | 6 | a1i 9 |
. 2
|
| 8 | simpr 110 |
. . 3
| |
| 9 | orcom 729 |
. . . . . 6
| |
| 10 | 9 | a1i 9 |
. . . . 5
|
| 11 | 10 | notbid 668 |
. . . 4
|
| 12 | 3 | ssbri 4078 |
. . . . . . 7
|
| 13 | 12 | adantl 277 |
. . . . . 6
|
| 14 | brxp 4695 |
. . . . . 6
| |
| 15 | 13, 14 | sylib 122 |
. . . . 5
|
| 16 | 1 | brdifun 6628 |
. . . . 5
|
| 17 | 15, 16 | syl 14 |
. . . 4
|
| 18 | 15 | simprd 114 |
. . . . 5
|
| 19 | 15 | simpld 112 |
. . . . 5
|
| 20 | 1 | brdifun 6628 |
. . . . 5
|
| 21 | 18, 19, 20 | syl2anc 411 |
. . . 4
|
| 22 | 11, 17, 21 | 3bitr4d 220 |
. . 3
|
| 23 | 8, 22 | mpbid 147 |
. 2
|
| 24 | simprl 529 |
. . . . 5
| |
| 25 | 12 | ad2antrl 490 |
. . . . . . 7
|
| 26 | 14 | simplbi 274 |
. . . . . . 7
|
| 27 | 25, 26 | syl 14 |
. . . . . 6
|
| 28 | 14 | simprbi 275 |
. . . . . . 7
|
| 29 | 25, 28 | syl 14 |
. . . . . 6
|
| 30 | 27, 29, 16 | syl2anc 411 |
. . . . 5
|
| 31 | 24, 30 | mpbid 147 |
. . . 4
|
| 32 | simprr 531 |
. . . . 5
| |
| 33 | 3 | brel 4716 |
. . . . . . . 8
|
| 34 | 33 | simprd 114 |
. . . . . . 7
|
| 35 | 32, 34 | syl 14 |
. . . . . 6
|
| 36 | 1 | brdifun 6628 |
. . . . . 6
|
| 37 | 29, 35, 36 | syl2anc 411 |
. . . . 5
|
| 38 | 32, 37 | mpbid 147 |
. . . 4
|
| 39 | simpl 109 |
. . . . . . 7
| |
| 40 | swoer.3 |
. . . . . . . 8
| |
| 41 | 40 | swopolem 4341 |
. . . . . . 7
|
| 42 | 39, 27, 35, 29, 41 | syl13anc 1251 |
. . . . . 6
|
| 43 | 40 | swopolem 4341 |
. . . . . . . 8
|
| 44 | 39, 35, 27, 29, 43 | syl13anc 1251 |
. . . . . . 7
|
| 45 | orcom 729 |
. . . . . . 7
| |
| 46 | 44, 45 | imbitrrdi 162 |
. . . . . 6
|
| 47 | 42, 46 | orim12d 787 |
. . . . 5
|
| 48 | or4 772 |
. . . . 5
| |
| 49 | 47, 48 | imbitrdi 161 |
. . . 4
|
| 50 | 31, 38, 49 | mtord 784 |
. . 3
|
| 51 | 1 | brdifun 6628 |
. . . 4
|
| 52 | 27, 35, 51 | syl2anc 411 |
. . 3
|
| 53 | 50, 52 | mpbird 167 |
. 2
|
| 54 | swoer.2 |
. . . . . . 7
| |
| 55 | 54, 40 | swopo 4342 |
. . . . . 6
|
| 56 | poirr 4343 |
. . . . . 6
| |
| 57 | 55, 56 | sylan 283 |
. . . . 5
|
| 58 | pm1.2 757 |
. . . . 5
| |
| 59 | 57, 58 | nsyl 629 |
. . . 4
|
| 60 | simpr 110 |
. . . . 5
| |
| 61 | 1 | brdifun 6628 |
. . . . 5
|
| 62 | 60, 60, 61 | syl2anc 411 |
. . . 4
|
| 63 | 59, 62 | mpbird 167 |
. . 3
|
| 64 | 3 | ssbri 4078 |
. . . . 5
|
| 65 | brxp 4695 |
. . . . . 6
| |
| 66 | 65 | simplbi 274 |
. . . . 5
|
| 67 | 64, 66 | syl 14 |
. . . 4
|
| 68 | 67 | adantl 277 |
. . 3
|
| 69 | 63, 68 | impbida 596 |
. 2
|
| 70 | 7, 23, 53, 69 | iserd 6627 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-po 4332 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-er 6601 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |