Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > swoer | Unicode version |
Description: Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
swoer.1 | |
swoer.2 | |
swoer.3 |
Ref | Expression |
---|---|
swoer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swoer.1 | . . . . 5 | |
2 | difss 3253 | . . . . 5 | |
3 | 1, 2 | eqsstri 3179 | . . . 4 |
4 | relxp 4720 | . . . 4 | |
5 | relss 4698 | . . . 4 | |
6 | 3, 4, 5 | mp2 16 | . . 3 |
7 | 6 | a1i 9 | . 2 |
8 | simpr 109 | . . 3 | |
9 | orcom 723 | . . . . . 6 | |
10 | 9 | a1i 9 | . . . . 5 |
11 | 10 | notbid 662 | . . . 4 |
12 | 3 | ssbri 4033 | . . . . . . 7 |
13 | 12 | adantl 275 | . . . . . 6 |
14 | brxp 4642 | . . . . . 6 | |
15 | 13, 14 | sylib 121 | . . . . 5 |
16 | 1 | brdifun 6540 | . . . . 5 |
17 | 15, 16 | syl 14 | . . . 4 |
18 | 15 | simprd 113 | . . . . 5 |
19 | 15 | simpld 111 | . . . . 5 |
20 | 1 | brdifun 6540 | . . . . 5 |
21 | 18, 19, 20 | syl2anc 409 | . . . 4 |
22 | 11, 17, 21 | 3bitr4d 219 | . . 3 |
23 | 8, 22 | mpbid 146 | . 2 |
24 | simprl 526 | . . . . 5 | |
25 | 12 | ad2antrl 487 | . . . . . . 7 |
26 | 14 | simplbi 272 | . . . . . . 7 |
27 | 25, 26 | syl 14 | . . . . . 6 |
28 | 14 | simprbi 273 | . . . . . . 7 |
29 | 25, 28 | syl 14 | . . . . . 6 |
30 | 27, 29, 16 | syl2anc 409 | . . . . 5 |
31 | 24, 30 | mpbid 146 | . . . 4 |
32 | simprr 527 | . . . . 5 | |
33 | 3 | brel 4663 | . . . . . . . 8 |
34 | 33 | simprd 113 | . . . . . . 7 |
35 | 32, 34 | syl 14 | . . . . . 6 |
36 | 1 | brdifun 6540 | . . . . . 6 |
37 | 29, 35, 36 | syl2anc 409 | . . . . 5 |
38 | 32, 37 | mpbid 146 | . . . 4 |
39 | simpl 108 | . . . . . . 7 | |
40 | swoer.3 | . . . . . . . 8 | |
41 | 40 | swopolem 4290 | . . . . . . 7 |
42 | 39, 27, 35, 29, 41 | syl13anc 1235 | . . . . . 6 |
43 | 40 | swopolem 4290 | . . . . . . . 8 |
44 | 39, 35, 27, 29, 43 | syl13anc 1235 | . . . . . . 7 |
45 | orcom 723 | . . . . . . 7 | |
46 | 44, 45 | syl6ibr 161 | . . . . . 6 |
47 | 42, 46 | orim12d 781 | . . . . 5 |
48 | or4 766 | . . . . 5 | |
49 | 47, 48 | syl6ib 160 | . . . 4 |
50 | 31, 38, 49 | mtord 778 | . . 3 |
51 | 1 | brdifun 6540 | . . . 4 |
52 | 27, 35, 51 | syl2anc 409 | . . 3 |
53 | 50, 52 | mpbird 166 | . 2 |
54 | swoer.2 | . . . . . . 7 | |
55 | 54, 40 | swopo 4291 | . . . . . 6 |
56 | poirr 4292 | . . . . . 6 | |
57 | 55, 56 | sylan 281 | . . . . 5 |
58 | pm1.2 751 | . . . . 5 | |
59 | 57, 58 | nsyl 623 | . . . 4 |
60 | simpr 109 | . . . . 5 | |
61 | 1 | brdifun 6540 | . . . . 5 |
62 | 60, 60, 61 | syl2anc 409 | . . . 4 |
63 | 59, 62 | mpbird 166 | . . 3 |
64 | 3 | ssbri 4033 | . . . . 5 |
65 | brxp 4642 | . . . . . 6 | |
66 | 65 | simplbi 272 | . . . . 5 |
67 | 64, 66 | syl 14 | . . . 4 |
68 | 67 | adantl 275 | . . 3 |
69 | 63, 68 | impbida 591 | . 2 |
70 | 7, 23, 53, 69 | iserd 6539 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wcel 2141 cdif 3118 cun 3119 wss 3121 class class class wbr 3989 wpo 4279 cxp 4609 ccnv 4610 wrel 4616 wer 6510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-po 4281 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-er 6513 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |