Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > swoord1 | Unicode version |
Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.) |
Ref | Expression |
---|---|
swoer.1 | |
swoer.2 | |
swoer.3 | |
swoord.4 | |
swoord.5 | |
swoord.6 |
Ref | Expression |
---|---|
swoord1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 | |
2 | swoord.6 | . . . . 5 | |
3 | swoer.1 | . . . . . . 7 | |
4 | difss 3259 | . . . . . . 7 | |
5 | 3, 4 | eqsstri 3185 | . . . . . 6 |
6 | 5 | ssbri 4042 | . . . . 5 |
7 | df-br 3999 | . . . . . 6 | |
8 | opelxp1 4654 | . . . . . 6 | |
9 | 7, 8 | sylbi 121 | . . . . 5 |
10 | 2, 6, 9 | 3syl 17 | . . . 4 |
11 | swoord.5 | . . . 4 | |
12 | swoord.4 | . . . 4 | |
13 | swoer.3 | . . . . 5 | |
14 | 13 | swopolem 4299 | . . . 4 |
15 | 1, 10, 11, 12, 14 | syl13anc 1240 | . . 3 |
16 | 3 | brdifun 6552 | . . . . . . 7 |
17 | 10, 12, 16 | syl2anc 411 | . . . . . 6 |
18 | 2, 17 | mpbid 147 | . . . . 5 |
19 | orc 712 | . . . . 5 | |
20 | 18, 19 | nsyl 628 | . . . 4 |
21 | biorf 744 | . . . 4 | |
22 | 20, 21 | syl 14 | . . 3 |
23 | 15, 22 | sylibrd 169 | . 2 |
24 | 13 | swopolem 4299 | . . . 4 |
25 | 1, 12, 11, 10, 24 | syl13anc 1240 | . . 3 |
26 | olc 711 | . . . . 5 | |
27 | 18, 26 | nsyl 628 | . . . 4 |
28 | biorf 744 | . . . 4 | |
29 | 27, 28 | syl 14 | . . 3 |
30 | 25, 29 | sylibrd 169 | . 2 |
31 | 23, 30 | impbid 129 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wo 708 w3a 978 wceq 1353 wcel 2146 cdif 3124 cun 3125 cop 3592 class class class wbr 3998 cxp 4618 ccnv 4619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-cnv 4628 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |