| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > swoord1 | Unicode version | ||
| Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| swoer.1 |
|
| swoer.2 |
|
| swoer.3 |
|
| swoord.4 |
|
| swoord.5 |
|
| swoord.6 |
|
| Ref | Expression |
|---|---|
| swoord1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . 4
| |
| 2 | swoord.6 |
. . . . 5
| |
| 3 | swoer.1 |
. . . . . . 7
| |
| 4 | difss 3289 |
. . . . . . 7
| |
| 5 | 3, 4 | eqsstri 3215 |
. . . . . 6
|
| 6 | 5 | ssbri 4077 |
. . . . 5
|
| 7 | df-br 4034 |
. . . . . 6
| |
| 8 | opelxp1 4697 |
. . . . . 6
| |
| 9 | 7, 8 | sylbi 121 |
. . . . 5
|
| 10 | 2, 6, 9 | 3syl 17 |
. . . 4
|
| 11 | swoord.5 |
. . . 4
| |
| 12 | swoord.4 |
. . . 4
| |
| 13 | swoer.3 |
. . . . 5
| |
| 14 | 13 | swopolem 4340 |
. . . 4
|
| 15 | 1, 10, 11, 12, 14 | syl13anc 1251 |
. . 3
|
| 16 | 3 | brdifun 6619 |
. . . . . . 7
|
| 17 | 10, 12, 16 | syl2anc 411 |
. . . . . 6
|
| 18 | 2, 17 | mpbid 147 |
. . . . 5
|
| 19 | orc 713 |
. . . . 5
| |
| 20 | 18, 19 | nsyl 629 |
. . . 4
|
| 21 | biorf 745 |
. . . 4
| |
| 22 | 20, 21 | syl 14 |
. . 3
|
| 23 | 15, 22 | sylibrd 169 |
. 2
|
| 24 | 13 | swopolem 4340 |
. . . 4
|
| 25 | 1, 12, 11, 10, 24 | syl13anc 1251 |
. . 3
|
| 26 | olc 712 |
. . . . 5
| |
| 27 | 18, 26 | nsyl 629 |
. . . 4
|
| 28 | biorf 745 |
. . . 4
| |
| 29 | 27, 28 | syl 14 |
. . 3
|
| 30 | 25, 29 | sylibrd 169 |
. 2
|
| 31 | 23, 30 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |