ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swoord1 Unicode version

Theorem swoord1 6554
Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypotheses
Ref Expression
swoer.1  |-  R  =  ( ( X  X.  X )  \  (  .<  u.  `'  .<  )
)
swoer.2  |-  ( (
ph  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y  .<  z  ->  -.  z  .<  y
) )
swoer.3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x  .<  y  ->  ( x  .<  z  \/  z  .<  y ) ) )
swoord.4  |-  ( ph  ->  B  e.  X )
swoord.5  |-  ( ph  ->  C  e.  X )
swoord.6  |-  ( ph  ->  A R B )
Assertion
Ref Expression
swoord1  |-  ( ph  ->  ( A  .<  C  <->  B  .<  C ) )
Distinct variable groups:    x, y, z, 
.<    x, A, y, z   
x, B, y, z   
x, C, y, z    ph, x, y, z    x, X, y, z
Allowed substitution hints:    R( x, y, z)

Proof of Theorem swoord1
StepHypRef Expression
1 id 19 . . . 4  |-  ( ph  ->  ph )
2 swoord.6 . . . . 5  |-  ( ph  ->  A R B )
3 swoer.1 . . . . . . 7  |-  R  =  ( ( X  X.  X )  \  (  .<  u.  `'  .<  )
)
4 difss 3259 . . . . . . 7  |-  ( ( X  X.  X ) 
\  (  .<  u.  `'  .<  ) )  C_  ( X  X.  X )
53, 4eqsstri 3185 . . . . . 6  |-  R  C_  ( X  X.  X
)
65ssbri 4042 . . . . 5  |-  ( A R B  ->  A
( X  X.  X
) B )
7 df-br 3999 . . . . . 6  |-  ( A ( X  X.  X
) B  <->  <. A ,  B >.  e.  ( X  X.  X ) )
8 opelxp1 4654 . . . . . 6  |-  ( <. A ,  B >.  e.  ( X  X.  X
)  ->  A  e.  X )
97, 8sylbi 121 . . . . 5  |-  ( A ( X  X.  X
) B  ->  A  e.  X )
102, 6, 93syl 17 . . . 4  |-  ( ph  ->  A  e.  X )
11 swoord.5 . . . 4  |-  ( ph  ->  C  e.  X )
12 swoord.4 . . . 4  |-  ( ph  ->  B  e.  X )
13 swoer.3 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x  .<  y  ->  ( x  .<  z  \/  z  .<  y ) ) )
1413swopolem 4299 . . . 4  |-  ( (
ph  /\  ( A  e.  X  /\  C  e.  X  /\  B  e.  X ) )  -> 
( A  .<  C  -> 
( A  .<  B  \/  B  .<  C ) ) )
151, 10, 11, 12, 14syl13anc 1240 . . 3  |-  ( ph  ->  ( A  .<  C  -> 
( A  .<  B  \/  B  .<  C ) ) )
163brdifun 6552 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A R B  <->  -.  ( A  .<  B  \/  B  .<  A ) ) )
1710, 12, 16syl2anc 411 . . . . . 6  |-  ( ph  ->  ( A R B  <->  -.  ( A  .<  B  \/  B  .<  A ) ) )
182, 17mpbid 147 . . . . 5  |-  ( ph  ->  -.  ( A  .<  B  \/  B  .<  A ) )
19 orc 712 . . . . 5  |-  ( A 
.<  B  ->  ( A 
.<  B  \/  B  .<  A ) )
2018, 19nsyl 628 . . . 4  |-  ( ph  ->  -.  A  .<  B )
21 biorf 744 . . . 4  |-  ( -.  A  .<  B  ->  ( B  .<  C  <->  ( A  .<  B  \/  B  .<  C ) ) )
2220, 21syl 14 . . 3  |-  ( ph  ->  ( B  .<  C  <->  ( A  .<  B  \/  B  .<  C ) ) )
2315, 22sylibrd 169 . 2  |-  ( ph  ->  ( A  .<  C  ->  B  .<  C ) )
2413swopolem 4299 . . . 4  |-  ( (
ph  /\  ( B  e.  X  /\  C  e.  X  /\  A  e.  X ) )  -> 
( B  .<  C  -> 
( B  .<  A  \/  A  .<  C ) ) )
251, 12, 11, 10, 24syl13anc 1240 . . 3  |-  ( ph  ->  ( B  .<  C  -> 
( B  .<  A  \/  A  .<  C ) ) )
26 olc 711 . . . . 5  |-  ( B 
.<  A  ->  ( A 
.<  B  \/  B  .<  A ) )
2718, 26nsyl 628 . . . 4  |-  ( ph  ->  -.  B  .<  A )
28 biorf 744 . . . 4  |-  ( -.  B  .<  A  ->  ( A  .<  C  <->  ( B  .<  A  \/  A  .<  C ) ) )
2927, 28syl 14 . . 3  |-  ( ph  ->  ( A  .<  C  <->  ( B  .<  A  \/  A  .<  C ) ) )
3025, 29sylibrd 169 . 2  |-  ( ph  ->  ( B  .<  C  ->  A  .<  C ) )
3123, 30impbid 129 1  |-  ( ph  ->  ( A  .<  C  <->  B  .<  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2146    \ cdif 3124    u. cun 3125   <.cop 3592   class class class wbr 3998    X. cxp 4618   `'ccnv 4619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator