ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sselii Unicode version

Theorem sselii 3020
Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.)
Hypotheses
Ref Expression
sseli.1  |-  A  C_  B
sselii.2  |-  C  e.  A
Assertion
Ref Expression
sselii  |-  C  e.  B

Proof of Theorem sselii
StepHypRef Expression
1 sselii.2 . 2  |-  C  e.  A
2 sseli.1 . . 3  |-  A  C_  B
32sseli 3019 . 2  |-  ( C  e.  A  ->  C  e.  B )
41, 3ax-mp 7 1  |-  C  e.  B
Colors of variables: wff set class
Syntax hints:    e. wcel 1438    C_ wss 2997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-11 1442  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-in 3003  df-ss 3010
This theorem is referenced by:  brtpos0  5999  ax1cn  7377  recni  7479  0xr  7513  pnfxr  7519  nn0rei  8654  0xnn0  8712  nnzi  8741  nn0zi  8742
  Copyright terms: Public domain W3C validator