| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sselii | Unicode version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseli.1 |
|
| sselii.2 |
|
| Ref | Expression |
|---|---|
| sselii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sselii.2 |
. 2
| |
| 2 | sseli.1 |
. . 3
| |
| 3 | 2 | sseli 3180 |
. 2
|
| 4 | 1, 3 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: brtpos0 6319 ax1cn 7945 recni 8055 0xr 8090 pnfxr 8096 nn0rei 9277 0xnn0 9335 nnzi 9364 nn0zi 9365 mincncf 14936 lgsdir2lem3 15355 |
| Copyright terms: Public domain | W3C validator |