ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sselii Unicode version

Theorem sselii 3139
Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.)
Hypotheses
Ref Expression
sseli.1  |-  A  C_  B
sselii.2  |-  C  e.  A
Assertion
Ref Expression
sselii  |-  C  e.  B

Proof of Theorem sselii
StepHypRef Expression
1 sselii.2 . 2  |-  C  e.  A
2 sseli.1 . . 3  |-  A  C_  B
32sseli 3138 . 2  |-  ( C  e.  A  ->  C  e.  B )
41, 3ax-mp 5 1  |-  C  e.  B
Colors of variables: wff set class
Syntax hints:    e. wcel 2136    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  brtpos0  6220  ax1cn  7802  recni  7911  0xr  7945  pnfxr  7951  nn0rei  9125  0xnn0  9183  nnzi  9212  nn0zi  9213  lgsdir2lem3  13571
  Copyright terms: Public domain W3C validator