| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnzi | Unicode version | ||
| Description: A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| nnzi.1 |
|
| Ref | Expression |
|---|---|
| nnzi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssz 9360 |
. 2
| |
| 2 | nnzi.1 |
. 2
| |
| 3 | 1, 2 | sselii 3181 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-z 9344 |
| This theorem is referenced by: 1z 9369 2z 9371 3z 9372 4z 9373 3dvds 12046 3dvdsdec 12047 ndvdsi 12115 6gcd4e2 12187 3lcm2e6woprm 12279 6lcm4e12 12280 3lcm2e6 12353 prm23ge5 12458 pockthi 12552 modxai 12610 gcdmodi 12615 strleun 12807 strle1g 12809 2logb9irr 15291 2logb9irrap 15297 lgsval 15329 lgsfvalg 15330 lgsfcl2 15331 lgsval2lem 15335 lgsdir2lem5 15357 lgsdir2 15358 lgsne0 15363 2lgs 15429 2lgsoddprmlem2 15431 2lgsoddprm 15438 ex-dvds 15460 ex-gcd 15461 |
| Copyright terms: Public domain | W3C validator |