Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sselii | GIF version |
Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
sselii.2 | ⊢ 𝐶 ∈ 𝐴 |
Ref | Expression |
---|---|
sselii | ⊢ 𝐶 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sselii.2 | . 2 ⊢ 𝐶 ∈ 𝐴 | |
2 | sseli.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
3 | 2 | sseli 3138 | . 2 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐶 ∈ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: brtpos0 6220 ax1cn 7802 recni 7911 0xr 7945 pnfxr 7951 nn0rei 9125 0xnn0 9183 nnzi 9212 nn0zi 9213 lgsdir2lem3 13571 |
Copyright terms: Public domain | W3C validator |