ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sselii GIF version

Theorem sselii 3189
Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.)
Hypotheses
Ref Expression
sseli.1 𝐴𝐵
sselii.2 𝐶𝐴
Assertion
Ref Expression
sselii 𝐶𝐵

Proof of Theorem sselii
StepHypRef Expression
1 sselii.2 . 2 𝐶𝐴
2 sseli.1 . . 3 𝐴𝐵
32sseli 3188 . 2 (𝐶𝐴𝐶𝐵)
41, 3ax-mp 5 1 𝐶𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2175  wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178
This theorem is referenced by:  brtpos0  6337  ax1cn  7973  recni  8083  0xr  8118  pnfxr  8124  nn0rei  9305  0xnn0  9363  nnzi  9392  nn0zi  9393  mincncf  15030  lgsdir2lem3  15449
  Copyright terms: Public domain W3C validator