ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sselii GIF version

Theorem sselii 3060
Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.)
Hypotheses
Ref Expression
sseli.1 𝐴𝐵
sselii.2 𝐶𝐴
Assertion
Ref Expression
sselii 𝐶𝐵

Proof of Theorem sselii
StepHypRef Expression
1 sselii.2 . 2 𝐶𝐴
2 sseli.1 . . 3 𝐴𝐵
32sseli 3059 . 2 (𝐶𝐴𝐶𝐵)
41, 3ax-mp 7 1 𝐶𝐵
Colors of variables: wff set class
Syntax hints:  wcel 1463  wss 3037
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-11 1467  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-in 3043  df-ss 3050
This theorem is referenced by:  brtpos0  6103  ax1cn  7596  recni  7702  0xr  7736  pnfxr  7742  nn0rei  8892  0xnn0  8950  nnzi  8979  nn0zi  8980
  Copyright terms: Public domain W3C validator