| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recni | Unicode version | ||
| Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| recni.1 |
|
| Ref | Expression |
|---|---|
| recni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 8017 |
. 2
| |
| 2 | recni.1 |
. 2
| |
| 3 | 1, 2 | sselii 3190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: resubcli 8335 ltapii 8708 nncni 9046 2cn 9107 3cn 9111 4cn 9114 5cn 9116 6cn 9118 7cn 9120 8cn 9122 9cn 9124 halfcn 9251 8th4div3 9256 nn0cni 9307 numltc 9529 sqge0i 10771 lt2sqi 10772 le2sqi 10773 sq11i 10774 sqrtmsq2i 11446 0.999... 11832 ef01bndlem 12067 sin4lt0 12078 eirraplem 12088 eirr 12090 egt2lt3 12091 sqrt2irraplemnn 12501 modsubi 12742 picn 15259 sinhalfpilem 15263 cosneghalfpi 15270 sinhalfpip 15292 sinhalfpim 15293 coshalfpip 15294 coshalfpim 15295 sincosq1sgn 15298 sincosq2sgn 15299 sincosq3sgn 15300 sincosq4sgn 15301 cosq23lt0 15305 coseq00topi 15307 sincosq1eq 15311 sincos4thpi 15312 tan4thpi 15313 sincos6thpi 15314 2logb9irrALT 15446 taupi 16012 |
| Copyright terms: Public domain | W3C validator |