![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recni | Unicode version |
Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
recni.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
recni |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 7916 |
. 2
![]() ![]() ![]() ![]() | |
2 | recni.1 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | sselii 3164 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-resscn 7916 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-in 3147 df-ss 3154 |
This theorem is referenced by: resubcli 8233 ltapii 8605 nncni 8942 2cn 9003 3cn 9007 4cn 9010 5cn 9012 6cn 9014 7cn 9016 8cn 9018 9cn 9020 halfcn 9146 8th4div3 9151 nn0cni 9201 numltc 9422 sqge0i 10620 lt2sqi 10621 le2sqi 10622 sq11i 10623 sqrtmsq2i 11157 0.999... 11542 ef01bndlem 11777 sin4lt0 11787 eirraplem 11797 eirr 11799 egt2lt3 11800 sqrt2irraplemnn 12192 picn 14479 sinhalfpilem 14483 cosneghalfpi 14490 sinhalfpip 14512 sinhalfpim 14513 coshalfpip 14514 coshalfpim 14515 sincosq1sgn 14518 sincosq2sgn 14519 sincosq3sgn 14520 sincosq4sgn 14521 cosq23lt0 14525 coseq00topi 14527 sincosq1eq 14531 sincos4thpi 14532 tan4thpi 14533 sincos6thpi 14534 2logb9irrALT 14663 taupi 15093 |
Copyright terms: Public domain | W3C validator |