| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recni | Unicode version | ||
| Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| recni.1 |
|
| Ref | Expression |
|---|---|
| recni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 8052 |
. 2
| |
| 2 | recni.1 |
. 2
| |
| 3 | 1, 2 | sselii 3198 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: resubcli 8370 ltapii 8743 nncni 9081 2cn 9142 3cn 9146 4cn 9149 5cn 9151 6cn 9153 7cn 9155 8cn 9157 9cn 9159 halfcn 9286 8th4div3 9291 nn0cni 9342 numltc 9564 sqge0i 10808 lt2sqi 10809 le2sqi 10810 sq11i 10811 sqrtmsq2i 11561 0.999... 11947 ef01bndlem 12182 sin4lt0 12193 eirraplem 12203 eirr 12205 egt2lt3 12206 sqrt2irraplemnn 12616 modsubi 12857 picn 15374 sinhalfpilem 15378 cosneghalfpi 15385 sinhalfpip 15407 sinhalfpim 15408 coshalfpip 15409 coshalfpim 15410 sincosq1sgn 15413 sincosq2sgn 15414 sincosq3sgn 15415 sincosq4sgn 15416 cosq23lt0 15420 coseq00topi 15422 sincosq1eq 15426 sincos4thpi 15427 tan4thpi 15428 sincos6thpi 15429 2logb9irrALT 15561 taupi 16214 |
| Copyright terms: Public domain | W3C validator |