| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recni | Unicode version | ||
| Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| recni.1 |
|
| Ref | Expression |
|---|---|
| recni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 7988 |
. 2
| |
| 2 | recni.1 |
. 2
| |
| 3 | 1, 2 | sselii 3181 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: resubcli 8306 ltapii 8679 nncni 9017 2cn 9078 3cn 9082 4cn 9085 5cn 9087 6cn 9089 7cn 9091 8cn 9093 9cn 9095 halfcn 9222 8th4div3 9227 nn0cni 9278 numltc 9499 sqge0i 10735 lt2sqi 10736 le2sqi 10737 sq11i 10738 sqrtmsq2i 11317 0.999... 11703 ef01bndlem 11938 sin4lt0 11949 eirraplem 11959 eirr 11961 egt2lt3 11962 sqrt2irraplemnn 12372 modsubi 12613 picn 15107 sinhalfpilem 15111 cosneghalfpi 15118 sinhalfpip 15140 sinhalfpim 15141 coshalfpip 15142 coshalfpim 15143 sincosq1sgn 15146 sincosq2sgn 15147 sincosq3sgn 15148 sincosq4sgn 15149 cosq23lt0 15153 coseq00topi 15155 sincosq1eq 15159 sincos4thpi 15160 tan4thpi 15161 sincos6thpi 15162 2logb9irrALT 15294 taupi 15804 |
| Copyright terms: Public domain | W3C validator |