| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recni | Unicode version | ||
| Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| recni.1 |
|
| Ref | Expression |
|---|---|
| recni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 8087 |
. 2
| |
| 2 | recni.1 |
. 2
| |
| 3 | 1, 2 | sselii 3221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: resubcli 8405 ltapii 8778 nncni 9116 2cn 9177 3cn 9181 4cn 9184 5cn 9186 6cn 9188 7cn 9190 8cn 9192 9cn 9194 halfcn 9321 8th4div3 9326 nn0cni 9377 numltc 9599 sqge0i 10843 lt2sqi 10844 le2sqi 10845 sq11i 10846 sqrtmsq2i 11641 0.999... 12027 ef01bndlem 12262 sin4lt0 12273 eirraplem 12283 eirr 12285 egt2lt3 12286 sqrt2irraplemnn 12696 modsubi 12937 picn 15455 sinhalfpilem 15459 cosneghalfpi 15466 sinhalfpip 15488 sinhalfpim 15489 coshalfpip 15490 coshalfpim 15491 sincosq1sgn 15494 sincosq2sgn 15495 sincosq3sgn 15496 sincosq4sgn 15497 cosq23lt0 15501 coseq00topi 15503 sincosq1eq 15507 sincos4thpi 15508 tan4thpi 15509 sincos6thpi 15510 2logb9irrALT 15642 taupi 16400 |
| Copyright terms: Public domain | W3C validator |