![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recni | Unicode version |
Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
recni.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
recni |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 7964 |
. 2
![]() ![]() ![]() ![]() | |
2 | recni.1 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | sselii 3176 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: resubcli 8282 ltapii 8654 nncni 8992 2cn 9053 3cn 9057 4cn 9060 5cn 9062 6cn 9064 7cn 9066 8cn 9068 9cn 9070 halfcn 9196 8th4div3 9201 nn0cni 9252 numltc 9473 sqge0i 10697 lt2sqi 10698 le2sqi 10699 sq11i 10700 sqrtmsq2i 11279 0.999... 11664 ef01bndlem 11899 sin4lt0 11910 eirraplem 11920 eirr 11922 egt2lt3 11923 sqrt2irraplemnn 12317 picn 14922 sinhalfpilem 14926 cosneghalfpi 14933 sinhalfpip 14955 sinhalfpim 14956 coshalfpip 14957 coshalfpim 14958 sincosq1sgn 14961 sincosq2sgn 14962 sincosq3sgn 14963 sincosq4sgn 14964 cosq23lt0 14968 coseq00topi 14970 sincosq1eq 14974 sincos4thpi 14975 tan4thpi 14976 sincos6thpi 14977 2logb9irrALT 15106 taupi 15563 |
Copyright terms: Public domain | W3C validator |