Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recni | Unicode version |
Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
recni.1 |
Ref | Expression |
---|---|
recni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 7866 | . 2 | |
2 | recni.1 | . 2 | |
3 | 1, 2 | sselii 3144 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 cc 7772 cr 7773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: resubcli 8182 ltapii 8554 nncni 8888 2cn 8949 3cn 8953 4cn 8956 5cn 8958 6cn 8960 7cn 8962 8cn 8964 9cn 8966 halfcn 9092 8th4div3 9097 nn0cni 9147 numltc 9368 sqge0i 10562 lt2sqi 10563 le2sqi 10564 sq11i 10565 sqrtmsq2i 11099 0.999... 11484 ef01bndlem 11719 sin4lt0 11729 eirraplem 11739 eirr 11741 egt2lt3 11742 sqrt2irraplemnn 12133 picn 13502 sinhalfpilem 13506 cosneghalfpi 13513 sinhalfpip 13535 sinhalfpim 13536 coshalfpip 13537 coshalfpim 13538 sincosq1sgn 13541 sincosq2sgn 13542 sincosq3sgn 13543 sincosq4sgn 13544 cosq23lt0 13548 coseq00topi 13550 sincosq1eq 13554 sincos4thpi 13555 tan4thpi 13556 sincos6thpi 13557 2logb9irrALT 13686 taupi 14102 |
Copyright terms: Public domain | W3C validator |