| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 0xr | Unicode version | ||
| Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) | 
| Ref | Expression | 
|---|---|
| 0xr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ressxr 8070 | 
. 2
 | |
| 2 | 0re 8026 | 
. 2
 | |
| 3 | 1, 2 | sselii 3180 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7973 ax-addrcl 7976 ax-rnegex 7988 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8065 | 
| This theorem is referenced by: 0lepnf 9865 ge0gtmnf 9898 xlt0neg1 9913 xlt0neg2 9914 xle0neg1 9915 xle0neg2 9916 xaddf 9919 xaddval 9920 xaddid1 9937 xaddid2 9938 xnn0xadd0 9942 xaddge0 9953 xsubge0 9956 xposdif 9957 ioopos 10025 elxrge0 10053 0e0iccpnf 10055 dfrp2 10353 xrmaxadd 11426 xrminrpcl 11439 xrbdtri 11441 fprodge0 11802 ef01bndlem 11921 sin01bnd 11922 cos01bnd 11923 cos1bnd 11924 sinltxirr 11926 sin01gt0 11927 cos01gt0 11928 sin02gt0 11929 sincos1sgn 11930 sincos2sgn 11931 cos12dec 11933 halfleoddlt 12059 psmetge0 14567 isxmet2d 14584 xmetge0 14601 blgt0 14638 xblss2ps 14640 xblss2 14641 xblm 14653 bdxmet 14737 bdmet 14738 bdmopn 14740 xmetxp 14743 cnblcld 14771 blssioo 14789 reeff1oleme 15008 reeff1o 15009 sin0pilem1 15017 sin0pilem2 15018 pilem3 15019 sinhalfpilem 15027 sincosq1lem 15061 sincosq1sgn 15062 sincosq2sgn 15063 sinq12gt0 15066 cosq14gt0 15068 tangtx 15074 sincos4thpi 15076 pigt3 15080 cosordlem 15085 cosq34lt1 15086 cos02pilt1 15087 cos0pilt1 15088 iooref1o 15678 taupi 15717 | 
| Copyright terms: Public domain | W3C validator |