| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0xr | Unicode version | ||
| Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| Ref | Expression |
|---|---|
| 0xr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8186 |
. 2
| |
| 2 | 0re 8142 |
. 2
| |
| 3 | 1, 2 | sselii 3221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-1re 8089 ax-addrcl 8092 ax-rnegex 8104 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-xr 8181 |
| This theorem is referenced by: 0lepnf 9982 ge0gtmnf 10015 xlt0neg1 10030 xlt0neg2 10031 xle0neg1 10032 xle0neg2 10033 xaddf 10036 xaddval 10037 xaddid1 10054 xaddid2 10055 xnn0xadd0 10059 xaddge0 10070 xsubge0 10073 xposdif 10074 ioopos 10142 elxrge0 10170 0e0iccpnf 10172 dfrp2 10478 xrmaxadd 11767 xrminrpcl 11780 xrbdtri 11782 fprodge0 12143 ef01bndlem 12262 sin01bnd 12263 cos01bnd 12264 cos1bnd 12265 sinltxirr 12267 sin01gt0 12268 cos01gt0 12269 sin02gt0 12270 sincos1sgn 12271 sincos2sgn 12272 cos12dec 12274 halfleoddlt 12400 psmetge0 14999 isxmet2d 15016 xmetge0 15033 blgt0 15070 xblss2ps 15072 xblss2 15073 xblm 15085 bdxmet 15169 bdmet 15170 bdmopn 15172 xmetxp 15175 cnblcld 15203 blssioo 15221 reeff1oleme 15440 reeff1o 15441 sin0pilem1 15449 sin0pilem2 15450 pilem3 15451 sinhalfpilem 15459 sincosq1lem 15493 sincosq1sgn 15494 sincosq2sgn 15495 sinq12gt0 15498 cosq14gt0 15500 tangtx 15506 sincos4thpi 15508 pigt3 15512 cosordlem 15517 cosq34lt1 15518 cos02pilt1 15519 cos0pilt1 15520 iooref1o 16361 taupi 16400 |
| Copyright terms: Public domain | W3C validator |