![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0xr | Unicode version |
Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
0xr |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 7727 |
. 2
![]() ![]() ![]() ![]() | |
2 | 0re 7684 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | sselii 3058 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-1re 7633 ax-addrcl 7636 ax-rnegex 7648 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-xr 7722 |
This theorem is referenced by: 0lepnf 9463 ge0gtmnf 9493 xlt0neg1 9508 xlt0neg2 9509 xle0neg1 9510 xle0neg2 9511 xaddf 9514 xaddval 9515 xaddid1 9532 xaddid2 9533 xnn0xadd0 9537 xaddge0 9548 xsubge0 9551 xposdif 9552 ioopos 9620 elxrge0 9648 0e0iccpnf 9650 xrmaxadd 10916 xrminrpcl 10929 xrbdtri 10931 ef01bndlem 11308 sin01bnd 11309 cos01bnd 11310 cos1bnd 11311 sin01gt0 11313 cos01gt0 11314 sin02gt0 11315 sincos1sgn 11316 sincos2sgn 11317 halfleoddlt 11433 psmetge0 12314 isxmet2d 12331 xmetge0 12348 blgt0 12385 xblss2ps 12387 xblss2 12388 xblm 12400 bdxmet 12484 bdmet 12485 bdmopn 12487 xmetxp 12490 cnblcld 12518 blssioo 12525 |
Copyright terms: Public domain | W3C validator |