| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0xr | Unicode version | ||
| Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| Ref | Expression |
|---|---|
| 0xr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8136 |
. 2
| |
| 2 | 0re 8092 |
. 2
| |
| 3 | 1, 2 | sselii 3194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-1re 8039 ax-addrcl 8042 ax-rnegex 8054 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-xr 8131 |
| This theorem is referenced by: 0lepnf 9932 ge0gtmnf 9965 xlt0neg1 9980 xlt0neg2 9981 xle0neg1 9982 xle0neg2 9983 xaddf 9986 xaddval 9987 xaddid1 10004 xaddid2 10005 xnn0xadd0 10009 xaddge0 10020 xsubge0 10023 xposdif 10024 ioopos 10092 elxrge0 10120 0e0iccpnf 10122 dfrp2 10428 xrmaxadd 11647 xrminrpcl 11660 xrbdtri 11662 fprodge0 12023 ef01bndlem 12142 sin01bnd 12143 cos01bnd 12144 cos1bnd 12145 sinltxirr 12147 sin01gt0 12148 cos01gt0 12149 sin02gt0 12150 sincos1sgn 12151 sincos2sgn 12152 cos12dec 12154 halfleoddlt 12280 psmetge0 14878 isxmet2d 14895 xmetge0 14912 blgt0 14949 xblss2ps 14951 xblss2 14952 xblm 14964 bdxmet 15048 bdmet 15049 bdmopn 15051 xmetxp 15054 cnblcld 15082 blssioo 15100 reeff1oleme 15319 reeff1o 15320 sin0pilem1 15328 sin0pilem2 15329 pilem3 15330 sinhalfpilem 15338 sincosq1lem 15372 sincosq1sgn 15373 sincosq2sgn 15374 sinq12gt0 15377 cosq14gt0 15379 tangtx 15385 sincos4thpi 15387 pigt3 15391 cosordlem 15396 cosq34lt1 15397 cos02pilt1 15398 cos0pilt1 15399 iooref1o 16114 taupi 16153 |
| Copyright terms: Public domain | W3C validator |