![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0xr | Unicode version |
Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
0xr |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 8065 |
. 2
![]() ![]() ![]() ![]() | |
2 | 0re 8021 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | sselii 3177 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1re 7968 ax-addrcl 7971 ax-rnegex 7983 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-xr 8060 |
This theorem is referenced by: 0lepnf 9859 ge0gtmnf 9892 xlt0neg1 9907 xlt0neg2 9908 xle0neg1 9909 xle0neg2 9910 xaddf 9913 xaddval 9914 xaddid1 9931 xaddid2 9932 xnn0xadd0 9936 xaddge0 9947 xsubge0 9950 xposdif 9951 ioopos 10019 elxrge0 10047 0e0iccpnf 10049 dfrp2 10335 xrmaxadd 11407 xrminrpcl 11420 xrbdtri 11422 fprodge0 11783 ef01bndlem 11902 sin01bnd 11903 cos01bnd 11904 cos1bnd 11905 sinltxirr 11907 sin01gt0 11908 cos01gt0 11909 sin02gt0 11910 sincos1sgn 11911 sincos2sgn 11912 cos12dec 11914 halfleoddlt 12038 psmetge0 14510 isxmet2d 14527 xmetge0 14544 blgt0 14581 xblss2ps 14583 xblss2 14584 xblm 14596 bdxmet 14680 bdmet 14681 bdmopn 14683 xmetxp 14686 cnblcld 14714 blssioo 14732 reeff1oleme 14948 reeff1o 14949 sin0pilem1 14957 sin0pilem2 14958 pilem3 14959 sinhalfpilem 14967 sincosq1lem 15001 sincosq1sgn 15002 sincosq2sgn 15003 sinq12gt0 15006 cosq14gt0 15008 tangtx 15014 sincos4thpi 15016 pigt3 15020 cosordlem 15025 cosq34lt1 15026 cos02pilt1 15027 cos0pilt1 15028 iooref1o 15594 taupi 15633 |
Copyright terms: Public domain | W3C validator |