| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0xr | Unicode version | ||
| Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| Ref | Expression |
|---|---|
| 0xr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8087 |
. 2
| |
| 2 | 0re 8043 |
. 2
| |
| 3 | 1, 2 | sselii 3181 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7990 ax-addrcl 7993 ax-rnegex 8005 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8082 |
| This theorem is referenced by: 0lepnf 9882 ge0gtmnf 9915 xlt0neg1 9930 xlt0neg2 9931 xle0neg1 9932 xle0neg2 9933 xaddf 9936 xaddval 9937 xaddid1 9954 xaddid2 9955 xnn0xadd0 9959 xaddge0 9970 xsubge0 9973 xposdif 9974 ioopos 10042 elxrge0 10070 0e0iccpnf 10072 dfrp2 10370 xrmaxadd 11443 xrminrpcl 11456 xrbdtri 11458 fprodge0 11819 ef01bndlem 11938 sin01bnd 11939 cos01bnd 11940 cos1bnd 11941 sinltxirr 11943 sin01gt0 11944 cos01gt0 11945 sin02gt0 11946 sincos1sgn 11947 sincos2sgn 11948 cos12dec 11950 halfleoddlt 12076 psmetge0 14651 isxmet2d 14668 xmetge0 14685 blgt0 14722 xblss2ps 14724 xblss2 14725 xblm 14737 bdxmet 14821 bdmet 14822 bdmopn 14824 xmetxp 14827 cnblcld 14855 blssioo 14873 reeff1oleme 15092 reeff1o 15093 sin0pilem1 15101 sin0pilem2 15102 pilem3 15103 sinhalfpilem 15111 sincosq1lem 15145 sincosq1sgn 15146 sincosq2sgn 15147 sinq12gt0 15150 cosq14gt0 15152 tangtx 15158 sincos4thpi 15160 pigt3 15164 cosordlem 15169 cosq34lt1 15170 cos02pilt1 15171 cos0pilt1 15172 iooref1o 15765 taupi 15804 |
| Copyright terms: Public domain | W3C validator |