| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0rei | Unicode version | ||
| Description: A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0re.1 |
|
| Ref | Expression |
|---|---|
| nn0rei |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre 9253 |
. 2
| |
| 2 | nn0re.1 |
. 2
| |
| 3 | 1, 2 | sselii 3180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-rnegex 7988 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-int 3875 df-inn 8991 df-n0 9250 |
| This theorem is referenced by: nn0cni 9261 nn0le2xi 9299 nn0lele2xi 9300 numlt 9481 numltc 9482 decle 9490 decleh 9491 modsubi 12588 |
| Copyright terms: Public domain | W3C validator |