![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq0 | GIF version |
Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
sseq0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3048 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) | |
2 | ss0 3323 | . . 3 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
3 | 1, 2 | syl6bi 161 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
4 | 3 | impcom 123 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ⊆ wss 2999 ∅c0 3286 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-dif 3001 df-in 3005 df-ss 3012 df-nul 3287 |
This theorem is referenced by: ssn0 3325 ssdifin0 3364 fisumss 10784 strleund 11581 strleun 11582 |
Copyright terms: Public domain | W3C validator |