ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq0 GIF version

Theorem sseq0 3431
Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
sseq0 ((𝐴𝐵𝐵 = ∅) → 𝐴 = ∅)

Proof of Theorem sseq0
StepHypRef Expression
1 sseq2 3148 . . 3 (𝐵 = ∅ → (𝐴𝐵𝐴 ⊆ ∅))
2 ss0 3430 . . 3 (𝐴 ⊆ ∅ → 𝐴 = ∅)
31, 2syl6bi 162 . 2 (𝐵 = ∅ → (𝐴𝐵𝐴 = ∅))
43impcom 124 1 ((𝐴𝐵𝐵 = ∅) → 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wss 3098  c0 3390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-dif 3100  df-in 3104  df-ss 3111  df-nul 3391
This theorem is referenced by:  ssn0  3432  ssdifin0  3471  fieq0  6909  fisumss  11266  strleund  12225  strleun  12226
  Copyright terms: Public domain W3C validator