ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fieq0 Unicode version

Theorem fieq0 7104
Description: A set is empty iff the class of all the finite intersections of that set is empty. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fieq0  |-  ( A  e.  V  ->  ( A  =  (/)  <->  ( fi `  A )  =  (/) ) )

Proof of Theorem fieq0
StepHypRef Expression
1 fveq2 5599 . . 3  |-  ( A  =  (/)  ->  ( fi
`  A )  =  ( fi `  (/) ) )
2 fi0 7103 . . 3  |-  ( fi
`  (/) )  =  (/)
31, 2eqtrdi 2256 . 2  |-  ( A  =  (/)  ->  ( fi
`  A )  =  (/) )
4 ssfii 7102 . . . 4  |-  ( A  e.  V  ->  A  C_  ( fi `  A
) )
5 sseq0 3510 . . . 4  |-  ( ( A  C_  ( fi `  A )  /\  ( fi `  A )  =  (/) )  ->  A  =  (/) )
64, 5sylan 283 . . 3  |-  ( ( A  e.  V  /\  ( fi `  A )  =  (/) )  ->  A  =  (/) )
76ex 115 . 2  |-  ( A  e.  V  ->  (
( fi `  A
)  =  (/)  ->  A  =  (/) ) )
83, 7impbid2 143 1  |-  ( A  e.  V  ->  ( A  =  (/)  <->  ( fi `  A )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178    C_ wss 3174   (/)c0 3468   ` cfv 5290   ficfi 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1o 6525  df-er 6643  df-en 6851  df-fin 6853  df-fi 7097
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator