ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fieq0 Unicode version

Theorem fieq0 7143
Description: A set is empty iff the class of all the finite intersections of that set is empty. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fieq0  |-  ( A  e.  V  ->  ( A  =  (/)  <->  ( fi `  A )  =  (/) ) )

Proof of Theorem fieq0
StepHypRef Expression
1 fveq2 5627 . . 3  |-  ( A  =  (/)  ->  ( fi
`  A )  =  ( fi `  (/) ) )
2 fi0 7142 . . 3  |-  ( fi
`  (/) )  =  (/)
31, 2eqtrdi 2278 . 2  |-  ( A  =  (/)  ->  ( fi
`  A )  =  (/) )
4 ssfii 7141 . . . 4  |-  ( A  e.  V  ->  A  C_  ( fi `  A
) )
5 sseq0 3533 . . . 4  |-  ( ( A  C_  ( fi `  A )  /\  ( fi `  A )  =  (/) )  ->  A  =  (/) )
64, 5sylan 283 . . 3  |-  ( ( A  e.  V  /\  ( fi `  A )  =  (/) )  ->  A  =  (/) )
76ex 115 . 2  |-  ( A  e.  V  ->  (
( fi `  A
)  =  (/)  ->  A  =  (/) ) )
83, 7impbid2 143 1  |-  ( A  e.  V  ->  ( A  =  (/)  <->  ( fi `  A )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200    C_ wss 3197   (/)c0 3491   ` cfv 5318   ficfi 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1o 6562  df-er 6680  df-en 6888  df-fin 6890  df-fi 7136
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator