| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strleund | Unicode version | ||
| Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
| Ref | Expression |
|---|---|
| strleund.f |
|
| strleund.g |
|
| strleund.l |
|
| Ref | Expression |
|---|---|
| strleund |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strleund.f |
. . . . 5
| |
| 2 | isstructim 12717 |
. . . . 5
| |
| 3 | 1, 2 | syl 14 |
. . . 4
|
| 4 | 3 | simp1d 1011 |
. . 3
|
| 5 | 4 | simp1d 1011 |
. 2
|
| 6 | strleund.g |
. . . . 5
| |
| 7 | isstructim 12717 |
. . . . 5
| |
| 8 | 6, 7 | syl 14 |
. . . 4
|
| 9 | 8 | simp1d 1011 |
. . 3
|
| 10 | 9 | simp2d 1012 |
. 2
|
| 11 | 5 | nnred 9020 |
. . 3
|
| 12 | 9 | simp1d 1011 |
. . . 4
|
| 13 | 12 | nnred 9020 |
. . 3
|
| 14 | 10 | nnred 9020 |
. . 3
|
| 15 | 4 | simp2d 1012 |
. . . . 5
|
| 16 | 15 | nnred 9020 |
. . . 4
|
| 17 | 4 | simp3d 1013 |
. . . 4
|
| 18 | strleund.l |
. . . . 5
| |
| 19 | 16, 13, 18 | ltled 8162 |
. . . 4
|
| 20 | 11, 16, 13, 17, 19 | letrd 8167 |
. . 3
|
| 21 | 9 | simp3d 1013 |
. . 3
|
| 22 | 11, 13, 14, 20, 21 | letrd 8167 |
. 2
|
| 23 | 3 | simp2d 1012 |
. . . 4
|
| 24 | 8 | simp2d 1012 |
. . . 4
|
| 25 | difss 3290 |
. . . . . . . 8
| |
| 26 | dmss 4866 |
. . . . . . . 8
| |
| 27 | 25, 26 | mp1i 10 |
. . . . . . 7
|
| 28 | 3 | simp3d 1013 |
. . . . . . 7
|
| 29 | 27, 28 | sstrd 3194 |
. . . . . 6
|
| 30 | difss 3290 |
. . . . . . . 8
| |
| 31 | dmss 4866 |
. . . . . . . 8
| |
| 32 | 30, 31 | mp1i 10 |
. . . . . . 7
|
| 33 | 8 | simp3d 1013 |
. . . . . . 7
|
| 34 | 32, 33 | sstrd 3194 |
. . . . . 6
|
| 35 | ss2in 3392 |
. . . . . 6
| |
| 36 | 29, 34, 35 | syl2anc 411 |
. . . . 5
|
| 37 | fzdisj 10144 |
. . . . . 6
| |
| 38 | 18, 37 | syl 14 |
. . . . 5
|
| 39 | sseq0 3493 |
. . . . 5
| |
| 40 | 36, 38, 39 | syl2anc 411 |
. . . 4
|
| 41 | funun 5303 |
. . . 4
| |
| 42 | 23, 24, 40, 41 | syl21anc 1248 |
. . 3
|
| 43 | difundir 3417 |
. . . 4
| |
| 44 | 43 | funeqi 5280 |
. . 3
|
| 45 | 42, 44 | sylibr 134 |
. 2
|
| 46 | structex 12715 |
. . . 4
| |
| 47 | 1, 46 | syl 14 |
. . 3
|
| 48 | structex 12715 |
. . . 4
| |
| 49 | 6, 48 | syl 14 |
. . 3
|
| 50 | unexg 4479 |
. . 3
| |
| 51 | 47, 49, 50 | syl2anc 411 |
. 2
|
| 52 | dmun 4874 |
. . 3
| |
| 53 | 15 | nnzd 9464 |
. . . . . . 7
|
| 54 | 10 | nnzd 9464 |
. . . . . . 7
|
| 55 | 16, 13, 14, 19, 21 | letrd 8167 |
. . . . . . 7
|
| 56 | eluz2 9624 |
. . . . . . 7
| |
| 57 | 53, 54, 55, 56 | syl3anbrc 1183 |
. . . . . 6
|
| 58 | fzss2 10156 |
. . . . . 6
| |
| 59 | 57, 58 | syl 14 |
. . . . 5
|
| 60 | 28, 59 | sstrd 3194 |
. . . 4
|
| 61 | 5 | nnzd 9464 |
. . . . . . 7
|
| 62 | 12 | nnzd 9464 |
. . . . . . 7
|
| 63 | eluz2 9624 |
. . . . . . 7
| |
| 64 | 61, 62, 20, 63 | syl3anbrc 1183 |
. . . . . 6
|
| 65 | fzss1 10155 |
. . . . . 6
| |
| 66 | 64, 65 | syl 14 |
. . . . 5
|
| 67 | 33, 66 | sstrd 3194 |
. . . 4
|
| 68 | 60, 67 | unssd 3340 |
. . 3
|
| 69 | 52, 68 | eqsstrid 3230 |
. 2
|
| 70 | isstructr 12718 |
. 2
| |
| 71 | 5, 10, 22, 45, 51, 69, 70 | syl33anc 1264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-struct 12705 |
| This theorem is referenced by: strle2g 12810 strle3g 12811 srngstrd 12848 lmodstrd 12866 ipsstrd 12878 imasvalstrd 12972 prdsvalstrd 12973 psrvalstrd 14298 |
| Copyright terms: Public domain | W3C validator |