ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strleund Unicode version

Theorem strleund 12906
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
Hypotheses
Ref Expression
strleund.f  |-  ( ph  ->  F Struct  <. A ,  B >. )
strleund.g  |-  ( ph  ->  G Struct  <. C ,  D >. )
strleund.l  |-  ( ph  ->  B  <  C )
Assertion
Ref Expression
strleund  |-  ( ph  ->  ( F  u.  G
) Struct  <. A ,  D >. )

Proof of Theorem strleund
StepHypRef Expression
1 strleund.f . . . . 5  |-  ( ph  ->  F Struct  <. A ,  B >. )
2 isstructim 12817 . . . . 5  |-  ( F Struct  <. A ,  B >.  -> 
( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
31, 2syl 14 . . . 4  |-  ( ph  ->  ( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
43simp1d 1011 . . 3  |-  ( ph  ->  ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B ) )
54simp1d 1011 . 2  |-  ( ph  ->  A  e.  NN )
6 strleund.g . . . . 5  |-  ( ph  ->  G Struct  <. C ,  D >. )
7 isstructim 12817 . . . . 5  |-  ( G Struct  <. C ,  D >.  -> 
( ( C  e.  NN  /\  D  e.  NN  /\  C  <_  D )  /\  Fun  ( G  \  { (/) } )  /\  dom  G  C_  ( C ... D
) ) )
86, 7syl 14 . . . 4  |-  ( ph  ->  ( ( C  e.  NN  /\  D  e.  NN  /\  C  <_  D )  /\  Fun  ( G  \  { (/) } )  /\  dom  G  C_  ( C ... D
) ) )
98simp1d 1011 . . 3  |-  ( ph  ->  ( C  e.  NN  /\  D  e.  NN  /\  C  <_  D ) )
109simp2d 1012 . 2  |-  ( ph  ->  D  e.  NN )
115nnred 9048 . . 3  |-  ( ph  ->  A  e.  RR )
129simp1d 1011 . . . 4  |-  ( ph  ->  C  e.  NN )
1312nnred 9048 . . 3  |-  ( ph  ->  C  e.  RR )
1410nnred 9048 . . 3  |-  ( ph  ->  D  e.  RR )
154simp2d 1012 . . . . 5  |-  ( ph  ->  B  e.  NN )
1615nnred 9048 . . . 4  |-  ( ph  ->  B  e.  RR )
174simp3d 1013 . . . 4  |-  ( ph  ->  A  <_  B )
18 strleund.l . . . . 5  |-  ( ph  ->  B  <  C )
1916, 13, 18ltled 8190 . . . 4  |-  ( ph  ->  B  <_  C )
2011, 16, 13, 17, 19letrd 8195 . . 3  |-  ( ph  ->  A  <_  C )
219simp3d 1013 . . 3  |-  ( ph  ->  C  <_  D )
2211, 13, 14, 20, 21letrd 8195 . 2  |-  ( ph  ->  A  <_  D )
233simp2d 1012 . . . 4  |-  ( ph  ->  Fun  ( F  \  { (/) } ) )
248simp2d 1012 . . . 4  |-  ( ph  ->  Fun  ( G  \  { (/) } ) )
25 difss 3298 . . . . . . . 8  |-  ( F 
\  { (/) } ) 
C_  F
26 dmss 4876 . . . . . . . 8  |-  ( ( F  \  { (/) } )  C_  F  ->  dom  ( F  \  { (/)
} )  C_  dom  F )
2725, 26mp1i 10 . . . . . . 7  |-  ( ph  ->  dom  ( F  \  { (/) } )  C_  dom  F )
283simp3d 1013 . . . . . . 7  |-  ( ph  ->  dom  F  C_  ( A ... B ) )
2927, 28sstrd 3202 . . . . . 6  |-  ( ph  ->  dom  ( F  \  { (/) } )  C_  ( A ... B ) )
30 difss 3298 . . . . . . . 8  |-  ( G 
\  { (/) } ) 
C_  G
31 dmss 4876 . . . . . . . 8  |-  ( ( G  \  { (/) } )  C_  G  ->  dom  ( G  \  { (/)
} )  C_  dom  G )
3230, 31mp1i 10 . . . . . . 7  |-  ( ph  ->  dom  ( G  \  { (/) } )  C_  dom  G )
338simp3d 1013 . . . . . . 7  |-  ( ph  ->  dom  G  C_  ( C ... D ) )
3432, 33sstrd 3202 . . . . . 6  |-  ( ph  ->  dom  ( G  \  { (/) } )  C_  ( C ... D ) )
35 ss2in 3400 . . . . . 6  |-  ( ( dom  ( F  \  { (/) } )  C_  ( A ... B )  /\  dom  ( G 
\  { (/) } ) 
C_  ( C ... D ) )  -> 
( dom  ( F  \  { (/) } )  i^i 
dom  ( G  \  { (/) } ) ) 
C_  ( ( A ... B )  i^i  ( C ... D
) ) )
3629, 34, 35syl2anc 411 . . . . 5  |-  ( ph  ->  ( dom  ( F 
\  { (/) } )  i^i  dom  ( G  \  { (/) } ) ) 
C_  ( ( A ... B )  i^i  ( C ... D
) ) )
37 fzdisj 10173 . . . . . 6  |-  ( B  <  C  ->  (
( A ... B
)  i^i  ( C ... D ) )  =  (/) )
3818, 37syl 14 . . . . 5  |-  ( ph  ->  ( ( A ... B )  i^i  ( C ... D ) )  =  (/) )
39 sseq0 3501 . . . . 5  |-  ( ( ( dom  ( F 
\  { (/) } )  i^i  dom  ( G  \  { (/) } ) ) 
C_  ( ( A ... B )  i^i  ( C ... D
) )  /\  (
( A ... B
)  i^i  ( C ... D ) )  =  (/) )  ->  ( dom  ( F  \  { (/)
} )  i^i  dom  ( G  \  { (/) } ) )  =  (/) )
4036, 38, 39syl2anc 411 . . . 4  |-  ( ph  ->  ( dom  ( F 
\  { (/) } )  i^i  dom  ( G  \  { (/) } ) )  =  (/) )
41 funun 5314 . . . 4  |-  ( ( ( Fun  ( F 
\  { (/) } )  /\  Fun  ( G 
\  { (/) } ) )  /\  ( dom  ( F  \  { (/)
} )  i^i  dom  ( G  \  { (/) } ) )  =  (/) )  ->  Fun  ( ( F  \  { (/) } )  u.  ( G  \  { (/) } ) ) )
4223, 24, 40, 41syl21anc 1248 . . 3  |-  ( ph  ->  Fun  ( ( F 
\  { (/) } )  u.  ( G  \  { (/) } ) ) )
43 difundir 3425 . . . 4  |-  ( ( F  u.  G ) 
\  { (/) } )  =  ( ( F 
\  { (/) } )  u.  ( G  \  { (/) } ) )
4443funeqi 5291 . . 3  |-  ( Fun  ( ( F  u.  G )  \  { (/)
} )  <->  Fun  ( ( F  \  { (/) } )  u.  ( G 
\  { (/) } ) ) )
4542, 44sylibr 134 . 2  |-  ( ph  ->  Fun  ( ( F  u.  G )  \  { (/) } ) )
46 structex 12815 . . . 4  |-  ( F Struct  <. A ,  B >.  ->  F  e.  _V )
471, 46syl 14 . . 3  |-  ( ph  ->  F  e.  _V )
48 structex 12815 . . . 4  |-  ( G Struct  <. C ,  D >.  ->  G  e.  _V )
496, 48syl 14 . . 3  |-  ( ph  ->  G  e.  _V )
50 unexg 4489 . . 3  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F  u.  G
)  e.  _V )
5147, 49, 50syl2anc 411 . 2  |-  ( ph  ->  ( F  u.  G
)  e.  _V )
52 dmun 4884 . . 3  |-  dom  ( F  u.  G )  =  ( dom  F  u.  dom  G )
5315nnzd 9493 . . . . . . 7  |-  ( ph  ->  B  e.  ZZ )
5410nnzd 9493 . . . . . . 7  |-  ( ph  ->  D  e.  ZZ )
5516, 13, 14, 19, 21letrd 8195 . . . . . . 7  |-  ( ph  ->  B  <_  D )
56 eluz2 9653 . . . . . . 7  |-  ( D  e.  ( ZZ>= `  B
)  <->  ( B  e.  ZZ  /\  D  e.  ZZ  /\  B  <_  D ) )
5753, 54, 55, 56syl3anbrc 1183 . . . . . 6  |-  ( ph  ->  D  e.  ( ZZ>= `  B ) )
58 fzss2 10185 . . . . . 6  |-  ( D  e.  ( ZZ>= `  B
)  ->  ( A ... B )  C_  ( A ... D ) )
5957, 58syl 14 . . . . 5  |-  ( ph  ->  ( A ... B
)  C_  ( A ... D ) )
6028, 59sstrd 3202 . . . 4  |-  ( ph  ->  dom  F  C_  ( A ... D ) )
615nnzd 9493 . . . . . . 7  |-  ( ph  ->  A  e.  ZZ )
6212nnzd 9493 . . . . . . 7  |-  ( ph  ->  C  e.  ZZ )
63 eluz2 9653 . . . . . . 7  |-  ( C  e.  ( ZZ>= `  A
)  <->  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )
6461, 62, 20, 63syl3anbrc 1183 . . . . . 6  |-  ( ph  ->  C  e.  ( ZZ>= `  A ) )
65 fzss1 10184 . . . . . 6  |-  ( C  e.  ( ZZ>= `  A
)  ->  ( C ... D )  C_  ( A ... D ) )
6664, 65syl 14 . . . . 5  |-  ( ph  ->  ( C ... D
)  C_  ( A ... D ) )
6733, 66sstrd 3202 . . . 4  |-  ( ph  ->  dom  G  C_  ( A ... D ) )
6860, 67unssd 3348 . . 3  |-  ( ph  ->  ( dom  F  u.  dom  G )  C_  ( A ... D ) )
6952, 68eqsstrid 3238 . 2  |-  ( ph  ->  dom  ( F  u.  G )  C_  ( A ... D ) )
70 isstructr 12818 . 2  |-  ( ( ( A  e.  NN  /\  D  e.  NN  /\  A  <_  D )  /\  ( Fun  ( ( F  u.  G )  \  { (/) } )  /\  ( F  u.  G
)  e.  _V  /\  dom  ( F  u.  G
)  C_  ( A ... D ) ) )  ->  ( F  u.  G ) Struct  <. A ,  D >. )
715, 10, 22, 45, 51, 69, 70syl33anc 1264 1  |-  ( ph  ->  ( F  u.  G
) Struct  <. A ,  D >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1372    e. wcel 2175   _Vcvv 2771    \ cdif 3162    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3459   {csn 3632   <.cop 3635   class class class wbr 4043   dom cdm 4674   Fun wfun 5264   ` cfv 5270  (class class class)co 5943    < clt 8106    <_ cle 8107   NNcn 9035   ZZcz 9371   ZZ>=cuz 9647   ...cfz 10129   Struct cstr 12799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-struct 12805
This theorem is referenced by:  strle2g  12910  strle3g  12911  srngstrd  12949  lmodstrd  12967  ipsstrd  12979  imasvalstrd  13073  prdsvalstrd  13074  psrvalstrd  14401
  Copyright terms: Public domain W3C validator