| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strleund | Unicode version | ||
| Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
| Ref | Expression |
|---|---|
| strleund.f |
|
| strleund.g |
|
| strleund.l |
|
| Ref | Expression |
|---|---|
| strleund |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strleund.f |
. . . . 5
| |
| 2 | isstructim 12817 |
. . . . 5
| |
| 3 | 1, 2 | syl 14 |
. . . 4
|
| 4 | 3 | simp1d 1011 |
. . 3
|
| 5 | 4 | simp1d 1011 |
. 2
|
| 6 | strleund.g |
. . . . 5
| |
| 7 | isstructim 12817 |
. . . . 5
| |
| 8 | 6, 7 | syl 14 |
. . . 4
|
| 9 | 8 | simp1d 1011 |
. . 3
|
| 10 | 9 | simp2d 1012 |
. 2
|
| 11 | 5 | nnred 9048 |
. . 3
|
| 12 | 9 | simp1d 1011 |
. . . 4
|
| 13 | 12 | nnred 9048 |
. . 3
|
| 14 | 10 | nnred 9048 |
. . 3
|
| 15 | 4 | simp2d 1012 |
. . . . 5
|
| 16 | 15 | nnred 9048 |
. . . 4
|
| 17 | 4 | simp3d 1013 |
. . . 4
|
| 18 | strleund.l |
. . . . 5
| |
| 19 | 16, 13, 18 | ltled 8190 |
. . . 4
|
| 20 | 11, 16, 13, 17, 19 | letrd 8195 |
. . 3
|
| 21 | 9 | simp3d 1013 |
. . 3
|
| 22 | 11, 13, 14, 20, 21 | letrd 8195 |
. 2
|
| 23 | 3 | simp2d 1012 |
. . . 4
|
| 24 | 8 | simp2d 1012 |
. . . 4
|
| 25 | difss 3298 |
. . . . . . . 8
| |
| 26 | dmss 4876 |
. . . . . . . 8
| |
| 27 | 25, 26 | mp1i 10 |
. . . . . . 7
|
| 28 | 3 | simp3d 1013 |
. . . . . . 7
|
| 29 | 27, 28 | sstrd 3202 |
. . . . . 6
|
| 30 | difss 3298 |
. . . . . . . 8
| |
| 31 | dmss 4876 |
. . . . . . . 8
| |
| 32 | 30, 31 | mp1i 10 |
. . . . . . 7
|
| 33 | 8 | simp3d 1013 |
. . . . . . 7
|
| 34 | 32, 33 | sstrd 3202 |
. . . . . 6
|
| 35 | ss2in 3400 |
. . . . . 6
| |
| 36 | 29, 34, 35 | syl2anc 411 |
. . . . 5
|
| 37 | fzdisj 10173 |
. . . . . 6
| |
| 38 | 18, 37 | syl 14 |
. . . . 5
|
| 39 | sseq0 3501 |
. . . . 5
| |
| 40 | 36, 38, 39 | syl2anc 411 |
. . . 4
|
| 41 | funun 5314 |
. . . 4
| |
| 42 | 23, 24, 40, 41 | syl21anc 1248 |
. . 3
|
| 43 | difundir 3425 |
. . . 4
| |
| 44 | 43 | funeqi 5291 |
. . 3
|
| 45 | 42, 44 | sylibr 134 |
. 2
|
| 46 | structex 12815 |
. . . 4
| |
| 47 | 1, 46 | syl 14 |
. . 3
|
| 48 | structex 12815 |
. . . 4
| |
| 49 | 6, 48 | syl 14 |
. . 3
|
| 50 | unexg 4489 |
. . 3
| |
| 51 | 47, 49, 50 | syl2anc 411 |
. 2
|
| 52 | dmun 4884 |
. . 3
| |
| 53 | 15 | nnzd 9493 |
. . . . . . 7
|
| 54 | 10 | nnzd 9493 |
. . . . . . 7
|
| 55 | 16, 13, 14, 19, 21 | letrd 8195 |
. . . . . . 7
|
| 56 | eluz2 9653 |
. . . . . . 7
| |
| 57 | 53, 54, 55, 56 | syl3anbrc 1183 |
. . . . . 6
|
| 58 | fzss2 10185 |
. . . . . 6
| |
| 59 | 57, 58 | syl 14 |
. . . . 5
|
| 60 | 28, 59 | sstrd 3202 |
. . . 4
|
| 61 | 5 | nnzd 9493 |
. . . . . . 7
|
| 62 | 12 | nnzd 9493 |
. . . . . . 7
|
| 63 | eluz2 9653 |
. . . . . . 7
| |
| 64 | 61, 62, 20, 63 | syl3anbrc 1183 |
. . . . . 6
|
| 65 | fzss1 10184 |
. . . . . 6
| |
| 66 | 64, 65 | syl 14 |
. . . . 5
|
| 67 | 33, 66 | sstrd 3202 |
. . . 4
|
| 68 | 60, 67 | unssd 3348 |
. . 3
|
| 69 | 52, 68 | eqsstrid 3238 |
. 2
|
| 70 | isstructr 12818 |
. 2
| |
| 71 | 5, 10, 22, 45, 51, 69, 70 | syl33anc 1264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-struct 12805 |
| This theorem is referenced by: strle2g 12910 strle3g 12911 srngstrd 12949 lmodstrd 12967 ipsstrd 12979 imasvalstrd 13073 prdsvalstrd 13074 psrvalstrd 14401 |
| Copyright terms: Public domain | W3C validator |