ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strleund Unicode version

Theorem strleund 13131
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
Hypotheses
Ref Expression
strleund.f  |-  ( ph  ->  F Struct  <. A ,  B >. )
strleund.g  |-  ( ph  ->  G Struct  <. C ,  D >. )
strleund.l  |-  ( ph  ->  B  <  C )
Assertion
Ref Expression
strleund  |-  ( ph  ->  ( F  u.  G
) Struct  <. A ,  D >. )

Proof of Theorem strleund
StepHypRef Expression
1 strleund.f . . . . 5  |-  ( ph  ->  F Struct  <. A ,  B >. )
2 isstructim 13041 . . . . 5  |-  ( F Struct  <. A ,  B >.  -> 
( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
31, 2syl 14 . . . 4  |-  ( ph  ->  ( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
43simp1d 1033 . . 3  |-  ( ph  ->  ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B ) )
54simp1d 1033 . 2  |-  ( ph  ->  A  e.  NN )
6 strleund.g . . . . 5  |-  ( ph  ->  G Struct  <. C ,  D >. )
7 isstructim 13041 . . . . 5  |-  ( G Struct  <. C ,  D >.  -> 
( ( C  e.  NN  /\  D  e.  NN  /\  C  <_  D )  /\  Fun  ( G  \  { (/) } )  /\  dom  G  C_  ( C ... D
) ) )
86, 7syl 14 . . . 4  |-  ( ph  ->  ( ( C  e.  NN  /\  D  e.  NN  /\  C  <_  D )  /\  Fun  ( G  \  { (/) } )  /\  dom  G  C_  ( C ... D
) ) )
98simp1d 1033 . . 3  |-  ( ph  ->  ( C  e.  NN  /\  D  e.  NN  /\  C  <_  D ) )
109simp2d 1034 . 2  |-  ( ph  ->  D  e.  NN )
115nnred 9119 . . 3  |-  ( ph  ->  A  e.  RR )
129simp1d 1033 . . . 4  |-  ( ph  ->  C  e.  NN )
1312nnred 9119 . . 3  |-  ( ph  ->  C  e.  RR )
1410nnred 9119 . . 3  |-  ( ph  ->  D  e.  RR )
154simp2d 1034 . . . . 5  |-  ( ph  ->  B  e.  NN )
1615nnred 9119 . . . 4  |-  ( ph  ->  B  e.  RR )
174simp3d 1035 . . . 4  |-  ( ph  ->  A  <_  B )
18 strleund.l . . . . 5  |-  ( ph  ->  B  <  C )
1916, 13, 18ltled 8261 . . . 4  |-  ( ph  ->  B  <_  C )
2011, 16, 13, 17, 19letrd 8266 . . 3  |-  ( ph  ->  A  <_  C )
219simp3d 1035 . . 3  |-  ( ph  ->  C  <_  D )
2211, 13, 14, 20, 21letrd 8266 . 2  |-  ( ph  ->  A  <_  D )
233simp2d 1034 . . . 4  |-  ( ph  ->  Fun  ( F  \  { (/) } ) )
248simp2d 1034 . . . 4  |-  ( ph  ->  Fun  ( G  \  { (/) } ) )
25 difss 3330 . . . . . . . 8  |-  ( F 
\  { (/) } ) 
C_  F
26 dmss 4921 . . . . . . . 8  |-  ( ( F  \  { (/) } )  C_  F  ->  dom  ( F  \  { (/)
} )  C_  dom  F )
2725, 26mp1i 10 . . . . . . 7  |-  ( ph  ->  dom  ( F  \  { (/) } )  C_  dom  F )
283simp3d 1035 . . . . . . 7  |-  ( ph  ->  dom  F  C_  ( A ... B ) )
2927, 28sstrd 3234 . . . . . 6  |-  ( ph  ->  dom  ( F  \  { (/) } )  C_  ( A ... B ) )
30 difss 3330 . . . . . . . 8  |-  ( G 
\  { (/) } ) 
C_  G
31 dmss 4921 . . . . . . . 8  |-  ( ( G  \  { (/) } )  C_  G  ->  dom  ( G  \  { (/)
} )  C_  dom  G )
3230, 31mp1i 10 . . . . . . 7  |-  ( ph  ->  dom  ( G  \  { (/) } )  C_  dom  G )
338simp3d 1035 . . . . . . 7  |-  ( ph  ->  dom  G  C_  ( C ... D ) )
3432, 33sstrd 3234 . . . . . 6  |-  ( ph  ->  dom  ( G  \  { (/) } )  C_  ( C ... D ) )
35 ss2in 3432 . . . . . 6  |-  ( ( dom  ( F  \  { (/) } )  C_  ( A ... B )  /\  dom  ( G 
\  { (/) } ) 
C_  ( C ... D ) )  -> 
( dom  ( F  \  { (/) } )  i^i 
dom  ( G  \  { (/) } ) ) 
C_  ( ( A ... B )  i^i  ( C ... D
) ) )
3629, 34, 35syl2anc 411 . . . . 5  |-  ( ph  ->  ( dom  ( F 
\  { (/) } )  i^i  dom  ( G  \  { (/) } ) ) 
C_  ( ( A ... B )  i^i  ( C ... D
) ) )
37 fzdisj 10244 . . . . . 6  |-  ( B  <  C  ->  (
( A ... B
)  i^i  ( C ... D ) )  =  (/) )
3818, 37syl 14 . . . . 5  |-  ( ph  ->  ( ( A ... B )  i^i  ( C ... D ) )  =  (/) )
39 sseq0 3533 . . . . 5  |-  ( ( ( dom  ( F 
\  { (/) } )  i^i  dom  ( G  \  { (/) } ) ) 
C_  ( ( A ... B )  i^i  ( C ... D
) )  /\  (
( A ... B
)  i^i  ( C ... D ) )  =  (/) )  ->  ( dom  ( F  \  { (/)
} )  i^i  dom  ( G  \  { (/) } ) )  =  (/) )
4036, 38, 39syl2anc 411 . . . 4  |-  ( ph  ->  ( dom  ( F 
\  { (/) } )  i^i  dom  ( G  \  { (/) } ) )  =  (/) )
41 funun 5361 . . . 4  |-  ( ( ( Fun  ( F 
\  { (/) } )  /\  Fun  ( G 
\  { (/) } ) )  /\  ( dom  ( F  \  { (/)
} )  i^i  dom  ( G  \  { (/) } ) )  =  (/) )  ->  Fun  ( ( F  \  { (/) } )  u.  ( G  \  { (/) } ) ) )
4223, 24, 40, 41syl21anc 1270 . . 3  |-  ( ph  ->  Fun  ( ( F 
\  { (/) } )  u.  ( G  \  { (/) } ) ) )
43 difundir 3457 . . . 4  |-  ( ( F  u.  G ) 
\  { (/) } )  =  ( ( F 
\  { (/) } )  u.  ( G  \  { (/) } ) )
4443funeqi 5338 . . 3  |-  ( Fun  ( ( F  u.  G )  \  { (/)
} )  <->  Fun  ( ( F  \  { (/) } )  u.  ( G 
\  { (/) } ) ) )
4542, 44sylibr 134 . 2  |-  ( ph  ->  Fun  ( ( F  u.  G )  \  { (/) } ) )
46 structex 13039 . . . 4  |-  ( F Struct  <. A ,  B >.  ->  F  e.  _V )
471, 46syl 14 . . 3  |-  ( ph  ->  F  e.  _V )
48 structex 13039 . . . 4  |-  ( G Struct  <. C ,  D >.  ->  G  e.  _V )
496, 48syl 14 . . 3  |-  ( ph  ->  G  e.  _V )
50 unexg 4533 . . 3  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F  u.  G
)  e.  _V )
5147, 49, 50syl2anc 411 . 2  |-  ( ph  ->  ( F  u.  G
)  e.  _V )
52 dmun 4929 . . 3  |-  dom  ( F  u.  G )  =  ( dom  F  u.  dom  G )
5315nnzd 9564 . . . . . . 7  |-  ( ph  ->  B  e.  ZZ )
5410nnzd 9564 . . . . . . 7  |-  ( ph  ->  D  e.  ZZ )
5516, 13, 14, 19, 21letrd 8266 . . . . . . 7  |-  ( ph  ->  B  <_  D )
56 eluz2 9724 . . . . . . 7  |-  ( D  e.  ( ZZ>= `  B
)  <->  ( B  e.  ZZ  /\  D  e.  ZZ  /\  B  <_  D ) )
5753, 54, 55, 56syl3anbrc 1205 . . . . . 6  |-  ( ph  ->  D  e.  ( ZZ>= `  B ) )
58 fzss2 10256 . . . . . 6  |-  ( D  e.  ( ZZ>= `  B
)  ->  ( A ... B )  C_  ( A ... D ) )
5957, 58syl 14 . . . . 5  |-  ( ph  ->  ( A ... B
)  C_  ( A ... D ) )
6028, 59sstrd 3234 . . . 4  |-  ( ph  ->  dom  F  C_  ( A ... D ) )
615nnzd 9564 . . . . . . 7  |-  ( ph  ->  A  e.  ZZ )
6212nnzd 9564 . . . . . . 7  |-  ( ph  ->  C  e.  ZZ )
63 eluz2 9724 . . . . . . 7  |-  ( C  e.  ( ZZ>= `  A
)  <->  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )
6461, 62, 20, 63syl3anbrc 1205 . . . . . 6  |-  ( ph  ->  C  e.  ( ZZ>= `  A ) )
65 fzss1 10255 . . . . . 6  |-  ( C  e.  ( ZZ>= `  A
)  ->  ( C ... D )  C_  ( A ... D ) )
6664, 65syl 14 . . . . 5  |-  ( ph  ->  ( C ... D
)  C_  ( A ... D ) )
6733, 66sstrd 3234 . . . 4  |-  ( ph  ->  dom  G  C_  ( A ... D ) )
6860, 67unssd 3380 . . 3  |-  ( ph  ->  ( dom  F  u.  dom  G )  C_  ( A ... D ) )
6952, 68eqsstrid 3270 . 2  |-  ( ph  ->  dom  ( F  u.  G )  C_  ( A ... D ) )
70 isstructr 13042 . 2  |-  ( ( ( A  e.  NN  /\  D  e.  NN  /\  A  <_  D )  /\  ( Fun  ( ( F  u.  G )  \  { (/) } )  /\  ( F  u.  G
)  e.  _V  /\  dom  ( F  u.  G
)  C_  ( A ... D ) ) )  ->  ( F  u.  G ) Struct  <. A ,  D >. )
715, 10, 22, 45, 51, 69, 70syl33anc 1286 1  |-  ( ph  ->  ( F  u.  G
) Struct  <. A ,  D >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799    \ cdif 3194    u. cun 3195    i^i cin 3196    C_ wss 3197   (/)c0 3491   {csn 3666   <.cop 3669   class class class wbr 4082   dom cdm 4718   Fun wfun 5311   ` cfv 5317  (class class class)co 6000    < clt 8177    <_ cle 8178   NNcn 9106   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200   Struct cstr 13023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-struct 13029
This theorem is referenced by:  strle2g  13135  strle3g  13136  srngstrd  13174  lmodstrd  13192  ipsstrd  13204  imasvalstrd  13298  prdsvalstrd  13299  psrvalstrd  14626
  Copyright terms: Public domain W3C validator