ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strleund Unicode version

Theorem strleund 12724
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
Hypotheses
Ref Expression
strleund.f  |-  ( ph  ->  F Struct  <. A ,  B >. )
strleund.g  |-  ( ph  ->  G Struct  <. C ,  D >. )
strleund.l  |-  ( ph  ->  B  <  C )
Assertion
Ref Expression
strleund  |-  ( ph  ->  ( F  u.  G
) Struct  <. A ,  D >. )

Proof of Theorem strleund
StepHypRef Expression
1 strleund.f . . . . 5  |-  ( ph  ->  F Struct  <. A ,  B >. )
2 isstructim 12635 . . . . 5  |-  ( F Struct  <. A ,  B >.  -> 
( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
31, 2syl 14 . . . 4  |-  ( ph  ->  ( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
43simp1d 1011 . . 3  |-  ( ph  ->  ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B ) )
54simp1d 1011 . 2  |-  ( ph  ->  A  e.  NN )
6 strleund.g . . . . 5  |-  ( ph  ->  G Struct  <. C ,  D >. )
7 isstructim 12635 . . . . 5  |-  ( G Struct  <. C ,  D >.  -> 
( ( C  e.  NN  /\  D  e.  NN  /\  C  <_  D )  /\  Fun  ( G  \  { (/) } )  /\  dom  G  C_  ( C ... D
) ) )
86, 7syl 14 . . . 4  |-  ( ph  ->  ( ( C  e.  NN  /\  D  e.  NN  /\  C  <_  D )  /\  Fun  ( G  \  { (/) } )  /\  dom  G  C_  ( C ... D
) ) )
98simp1d 1011 . . 3  |-  ( ph  ->  ( C  e.  NN  /\  D  e.  NN  /\  C  <_  D ) )
109simp2d 1012 . 2  |-  ( ph  ->  D  e.  NN )
115nnred 8997 . . 3  |-  ( ph  ->  A  e.  RR )
129simp1d 1011 . . . 4  |-  ( ph  ->  C  e.  NN )
1312nnred 8997 . . 3  |-  ( ph  ->  C  e.  RR )
1410nnred 8997 . . 3  |-  ( ph  ->  D  e.  RR )
154simp2d 1012 . . . . 5  |-  ( ph  ->  B  e.  NN )
1615nnred 8997 . . . 4  |-  ( ph  ->  B  e.  RR )
174simp3d 1013 . . . 4  |-  ( ph  ->  A  <_  B )
18 strleund.l . . . . 5  |-  ( ph  ->  B  <  C )
1916, 13, 18ltled 8140 . . . 4  |-  ( ph  ->  B  <_  C )
2011, 16, 13, 17, 19letrd 8145 . . 3  |-  ( ph  ->  A  <_  C )
219simp3d 1013 . . 3  |-  ( ph  ->  C  <_  D )
2211, 13, 14, 20, 21letrd 8145 . 2  |-  ( ph  ->  A  <_  D )
233simp2d 1012 . . . 4  |-  ( ph  ->  Fun  ( F  \  { (/) } ) )
248simp2d 1012 . . . 4  |-  ( ph  ->  Fun  ( G  \  { (/) } ) )
25 difss 3286 . . . . . . . 8  |-  ( F 
\  { (/) } ) 
C_  F
26 dmss 4862 . . . . . . . 8  |-  ( ( F  \  { (/) } )  C_  F  ->  dom  ( F  \  { (/)
} )  C_  dom  F )
2725, 26mp1i 10 . . . . . . 7  |-  ( ph  ->  dom  ( F  \  { (/) } )  C_  dom  F )
283simp3d 1013 . . . . . . 7  |-  ( ph  ->  dom  F  C_  ( A ... B ) )
2927, 28sstrd 3190 . . . . . 6  |-  ( ph  ->  dom  ( F  \  { (/) } )  C_  ( A ... B ) )
30 difss 3286 . . . . . . . 8  |-  ( G 
\  { (/) } ) 
C_  G
31 dmss 4862 . . . . . . . 8  |-  ( ( G  \  { (/) } )  C_  G  ->  dom  ( G  \  { (/)
} )  C_  dom  G )
3230, 31mp1i 10 . . . . . . 7  |-  ( ph  ->  dom  ( G  \  { (/) } )  C_  dom  G )
338simp3d 1013 . . . . . . 7  |-  ( ph  ->  dom  G  C_  ( C ... D ) )
3432, 33sstrd 3190 . . . . . 6  |-  ( ph  ->  dom  ( G  \  { (/) } )  C_  ( C ... D ) )
35 ss2in 3388 . . . . . 6  |-  ( ( dom  ( F  \  { (/) } )  C_  ( A ... B )  /\  dom  ( G 
\  { (/) } ) 
C_  ( C ... D ) )  -> 
( dom  ( F  \  { (/) } )  i^i 
dom  ( G  \  { (/) } ) ) 
C_  ( ( A ... B )  i^i  ( C ... D
) ) )
3629, 34, 35syl2anc 411 . . . . 5  |-  ( ph  ->  ( dom  ( F 
\  { (/) } )  i^i  dom  ( G  \  { (/) } ) ) 
C_  ( ( A ... B )  i^i  ( C ... D
) ) )
37 fzdisj 10121 . . . . . 6  |-  ( B  <  C  ->  (
( A ... B
)  i^i  ( C ... D ) )  =  (/) )
3818, 37syl 14 . . . . 5  |-  ( ph  ->  ( ( A ... B )  i^i  ( C ... D ) )  =  (/) )
39 sseq0 3489 . . . . 5  |-  ( ( ( dom  ( F 
\  { (/) } )  i^i  dom  ( G  \  { (/) } ) ) 
C_  ( ( A ... B )  i^i  ( C ... D
) )  /\  (
( A ... B
)  i^i  ( C ... D ) )  =  (/) )  ->  ( dom  ( F  \  { (/)
} )  i^i  dom  ( G  \  { (/) } ) )  =  (/) )
4036, 38, 39syl2anc 411 . . . 4  |-  ( ph  ->  ( dom  ( F 
\  { (/) } )  i^i  dom  ( G  \  { (/) } ) )  =  (/) )
41 funun 5299 . . . 4  |-  ( ( ( Fun  ( F 
\  { (/) } )  /\  Fun  ( G 
\  { (/) } ) )  /\  ( dom  ( F  \  { (/)
} )  i^i  dom  ( G  \  { (/) } ) )  =  (/) )  ->  Fun  ( ( F  \  { (/) } )  u.  ( G  \  { (/) } ) ) )
4223, 24, 40, 41syl21anc 1248 . . 3  |-  ( ph  ->  Fun  ( ( F 
\  { (/) } )  u.  ( G  \  { (/) } ) ) )
43 difundir 3413 . . . 4  |-  ( ( F  u.  G ) 
\  { (/) } )  =  ( ( F 
\  { (/) } )  u.  ( G  \  { (/) } ) )
4443funeqi 5276 . . 3  |-  ( Fun  ( ( F  u.  G )  \  { (/)
} )  <->  Fun  ( ( F  \  { (/) } )  u.  ( G 
\  { (/) } ) ) )
4542, 44sylibr 134 . 2  |-  ( ph  ->  Fun  ( ( F  u.  G )  \  { (/) } ) )
46 structex 12633 . . . 4  |-  ( F Struct  <. A ,  B >.  ->  F  e.  _V )
471, 46syl 14 . . 3  |-  ( ph  ->  F  e.  _V )
48 structex 12633 . . . 4  |-  ( G Struct  <. C ,  D >.  ->  G  e.  _V )
496, 48syl 14 . . 3  |-  ( ph  ->  G  e.  _V )
50 unexg 4475 . . 3  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F  u.  G
)  e.  _V )
5147, 49, 50syl2anc 411 . 2  |-  ( ph  ->  ( F  u.  G
)  e.  _V )
52 dmun 4870 . . 3  |-  dom  ( F  u.  G )  =  ( dom  F  u.  dom  G )
5315nnzd 9441 . . . . . . 7  |-  ( ph  ->  B  e.  ZZ )
5410nnzd 9441 . . . . . . 7  |-  ( ph  ->  D  e.  ZZ )
5516, 13, 14, 19, 21letrd 8145 . . . . . . 7  |-  ( ph  ->  B  <_  D )
56 eluz2 9601 . . . . . . 7  |-  ( D  e.  ( ZZ>= `  B
)  <->  ( B  e.  ZZ  /\  D  e.  ZZ  /\  B  <_  D ) )
5753, 54, 55, 56syl3anbrc 1183 . . . . . 6  |-  ( ph  ->  D  e.  ( ZZ>= `  B ) )
58 fzss2 10133 . . . . . 6  |-  ( D  e.  ( ZZ>= `  B
)  ->  ( A ... B )  C_  ( A ... D ) )
5957, 58syl 14 . . . . 5  |-  ( ph  ->  ( A ... B
)  C_  ( A ... D ) )
6028, 59sstrd 3190 . . . 4  |-  ( ph  ->  dom  F  C_  ( A ... D ) )
615nnzd 9441 . . . . . . 7  |-  ( ph  ->  A  e.  ZZ )
6212nnzd 9441 . . . . . . 7  |-  ( ph  ->  C  e.  ZZ )
63 eluz2 9601 . . . . . . 7  |-  ( C  e.  ( ZZ>= `  A
)  <->  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )
6461, 62, 20, 63syl3anbrc 1183 . . . . . 6  |-  ( ph  ->  C  e.  ( ZZ>= `  A ) )
65 fzss1 10132 . . . . . 6  |-  ( C  e.  ( ZZ>= `  A
)  ->  ( C ... D )  C_  ( A ... D ) )
6664, 65syl 14 . . . . 5  |-  ( ph  ->  ( C ... D
)  C_  ( A ... D ) )
6733, 66sstrd 3190 . . . 4  |-  ( ph  ->  dom  G  C_  ( A ... D ) )
6860, 67unssd 3336 . . 3  |-  ( ph  ->  ( dom  F  u.  dom  G )  C_  ( A ... D ) )
6952, 68eqsstrid 3226 . 2  |-  ( ph  ->  dom  ( F  u.  G )  C_  ( A ... D ) )
70 isstructr 12636 . 2  |-  ( ( ( A  e.  NN  /\  D  e.  NN  /\  A  <_  D )  /\  ( Fun  ( ( F  u.  G )  \  { (/) } )  /\  ( F  u.  G
)  e.  _V  /\  dom  ( F  u.  G
)  C_  ( A ... D ) ) )  ->  ( F  u.  G ) Struct  <. A ,  D >. )
715, 10, 22, 45, 51, 69, 70syl33anc 1264 1  |-  ( ph  ->  ( F  u.  G
) Struct  <. A ,  D >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2164   _Vcvv 2760    \ cdif 3151    u. cun 3152    i^i cin 3153    C_ wss 3154   (/)c0 3447   {csn 3619   <.cop 3622   class class class wbr 4030   dom cdm 4660   Fun wfun 5249   ` cfv 5255  (class class class)co 5919    < clt 8056    <_ cle 8057   NNcn 8984   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077   Struct cstr 12617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-struct 12623
This theorem is referenced by:  strle2g  12728  strle3g  12729  srngstrd  12766  lmodstrd  12784  ipsstrd  12796  psrvalstrd  14165
  Copyright terms: Public domain W3C validator