Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > strleund | Unicode version |
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
Ref | Expression |
---|---|
strleund.f | Struct |
strleund.g | Struct |
strleund.l |
Ref | Expression |
---|---|
strleund | Struct |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strleund.f | . . . . 5 Struct | |
2 | isstructim 12408 | . . . . 5 Struct | |
3 | 1, 2 | syl 14 | . . . 4 |
4 | 3 | simp1d 999 | . . 3 |
5 | 4 | simp1d 999 | . 2 |
6 | strleund.g | . . . . 5 Struct | |
7 | isstructim 12408 | . . . . 5 Struct | |
8 | 6, 7 | syl 14 | . . . 4 |
9 | 8 | simp1d 999 | . . 3 |
10 | 9 | simp2d 1000 | . 2 |
11 | 5 | nnred 8870 | . . 3 |
12 | 9 | simp1d 999 | . . . 4 |
13 | 12 | nnred 8870 | . . 3 |
14 | 10 | nnred 8870 | . . 3 |
15 | 4 | simp2d 1000 | . . . . 5 |
16 | 15 | nnred 8870 | . . . 4 |
17 | 4 | simp3d 1001 | . . . 4 |
18 | strleund.l | . . . . 5 | |
19 | 16, 13, 18 | ltled 8017 | . . . 4 |
20 | 11, 16, 13, 17, 19 | letrd 8022 | . . 3 |
21 | 9 | simp3d 1001 | . . 3 |
22 | 11, 13, 14, 20, 21 | letrd 8022 | . 2 |
23 | 3 | simp2d 1000 | . . . 4 |
24 | 8 | simp2d 1000 | . . . 4 |
25 | difss 3248 | . . . . . . . 8 | |
26 | dmss 4803 | . . . . . . . 8 | |
27 | 25, 26 | mp1i 10 | . . . . . . 7 |
28 | 3 | simp3d 1001 | . . . . . . 7 |
29 | 27, 28 | sstrd 3152 | . . . . . 6 |
30 | difss 3248 | . . . . . . . 8 | |
31 | dmss 4803 | . . . . . . . 8 | |
32 | 30, 31 | mp1i 10 | . . . . . . 7 |
33 | 8 | simp3d 1001 | . . . . . . 7 |
34 | 32, 33 | sstrd 3152 | . . . . . 6 |
35 | ss2in 3350 | . . . . . 6 | |
36 | 29, 34, 35 | syl2anc 409 | . . . . 5 |
37 | fzdisj 9987 | . . . . . 6 | |
38 | 18, 37 | syl 14 | . . . . 5 |
39 | sseq0 3450 | . . . . 5 | |
40 | 36, 38, 39 | syl2anc 409 | . . . 4 |
41 | funun 5232 | . . . 4 | |
42 | 23, 24, 40, 41 | syl21anc 1227 | . . 3 |
43 | difundir 3375 | . . . 4 | |
44 | 43 | funeqi 5209 | . . 3 |
45 | 42, 44 | sylibr 133 | . 2 |
46 | structex 12406 | . . . 4 Struct | |
47 | 1, 46 | syl 14 | . . 3 |
48 | structex 12406 | . . . 4 Struct | |
49 | 6, 48 | syl 14 | . . 3 |
50 | unexg 4421 | . . 3 | |
51 | 47, 49, 50 | syl2anc 409 | . 2 |
52 | dmun 4811 | . . 3 | |
53 | 15 | nnzd 9312 | . . . . . . 7 |
54 | 10 | nnzd 9312 | . . . . . . 7 |
55 | 16, 13, 14, 19, 21 | letrd 8022 | . . . . . . 7 |
56 | eluz2 9472 | . . . . . . 7 | |
57 | 53, 54, 55, 56 | syl3anbrc 1171 | . . . . . 6 |
58 | fzss2 9999 | . . . . . 6 | |
59 | 57, 58 | syl 14 | . . . . 5 |
60 | 28, 59 | sstrd 3152 | . . . 4 |
61 | 5 | nnzd 9312 | . . . . . . 7 |
62 | 12 | nnzd 9312 | . . . . . . 7 |
63 | eluz2 9472 | . . . . . . 7 | |
64 | 61, 62, 20, 63 | syl3anbrc 1171 | . . . . . 6 |
65 | fzss1 9998 | . . . . . 6 | |
66 | 64, 65 | syl 14 | . . . . 5 |
67 | 33, 66 | sstrd 3152 | . . . 4 |
68 | 60, 67 | unssd 3298 | . . 3 |
69 | 52, 68 | eqsstrid 3188 | . 2 |
70 | isstructr 12409 | . 2 Struct | |
71 | 5, 10, 22, 45, 51, 69, 70 | syl33anc 1243 | 1 Struct |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 968 wceq 1343 wcel 2136 cvv 2726 cdif 3113 cun 3114 cin 3115 wss 3116 c0 3409 csn 3576 cop 3579 class class class wbr 3982 cdm 4604 wfun 5182 cfv 5188 (class class class)co 5842 clt 7933 cle 7934 cn 8857 cz 9191 cuz 9466 cfz 9944 Struct cstr 12390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-struct 12396 |
This theorem is referenced by: strle2g 12486 strle3g 12487 srngstrd 12517 lmodstrd 12528 ipsstrd 12536 |
Copyright terms: Public domain | W3C validator |