| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strleund | Unicode version | ||
| Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
| Ref | Expression |
|---|---|
| strleund.f |
|
| strleund.g |
|
| strleund.l |
|
| Ref | Expression |
|---|---|
| strleund |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strleund.f |
. . . . 5
| |
| 2 | isstructim 12961 |
. . . . 5
| |
| 3 | 1, 2 | syl 14 |
. . . 4
|
| 4 | 3 | simp1d 1012 |
. . 3
|
| 5 | 4 | simp1d 1012 |
. 2
|
| 6 | strleund.g |
. . . . 5
| |
| 7 | isstructim 12961 |
. . . . 5
| |
| 8 | 6, 7 | syl 14 |
. . . 4
|
| 9 | 8 | simp1d 1012 |
. . 3
|
| 10 | 9 | simp2d 1013 |
. 2
|
| 11 | 5 | nnred 9084 |
. . 3
|
| 12 | 9 | simp1d 1012 |
. . . 4
|
| 13 | 12 | nnred 9084 |
. . 3
|
| 14 | 10 | nnred 9084 |
. . 3
|
| 15 | 4 | simp2d 1013 |
. . . . 5
|
| 16 | 15 | nnred 9084 |
. . . 4
|
| 17 | 4 | simp3d 1014 |
. . . 4
|
| 18 | strleund.l |
. . . . 5
| |
| 19 | 16, 13, 18 | ltled 8226 |
. . . 4
|
| 20 | 11, 16, 13, 17, 19 | letrd 8231 |
. . 3
|
| 21 | 9 | simp3d 1014 |
. . 3
|
| 22 | 11, 13, 14, 20, 21 | letrd 8231 |
. 2
|
| 23 | 3 | simp2d 1013 |
. . . 4
|
| 24 | 8 | simp2d 1013 |
. . . 4
|
| 25 | difss 3307 |
. . . . . . . 8
| |
| 26 | dmss 4896 |
. . . . . . . 8
| |
| 27 | 25, 26 | mp1i 10 |
. . . . . . 7
|
| 28 | 3 | simp3d 1014 |
. . . . . . 7
|
| 29 | 27, 28 | sstrd 3211 |
. . . . . 6
|
| 30 | difss 3307 |
. . . . . . . 8
| |
| 31 | dmss 4896 |
. . . . . . . 8
| |
| 32 | 30, 31 | mp1i 10 |
. . . . . . 7
|
| 33 | 8 | simp3d 1014 |
. . . . . . 7
|
| 34 | 32, 33 | sstrd 3211 |
. . . . . 6
|
| 35 | ss2in 3409 |
. . . . . 6
| |
| 36 | 29, 34, 35 | syl2anc 411 |
. . . . 5
|
| 37 | fzdisj 10209 |
. . . . . 6
| |
| 38 | 18, 37 | syl 14 |
. . . . 5
|
| 39 | sseq0 3510 |
. . . . 5
| |
| 40 | 36, 38, 39 | syl2anc 411 |
. . . 4
|
| 41 | funun 5334 |
. . . 4
| |
| 42 | 23, 24, 40, 41 | syl21anc 1249 |
. . 3
|
| 43 | difundir 3434 |
. . . 4
| |
| 44 | 43 | funeqi 5311 |
. . 3
|
| 45 | 42, 44 | sylibr 134 |
. 2
|
| 46 | structex 12959 |
. . . 4
| |
| 47 | 1, 46 | syl 14 |
. . 3
|
| 48 | structex 12959 |
. . . 4
| |
| 49 | 6, 48 | syl 14 |
. . 3
|
| 50 | unexg 4508 |
. . 3
| |
| 51 | 47, 49, 50 | syl2anc 411 |
. 2
|
| 52 | dmun 4904 |
. . 3
| |
| 53 | 15 | nnzd 9529 |
. . . . . . 7
|
| 54 | 10 | nnzd 9529 |
. . . . . . 7
|
| 55 | 16, 13, 14, 19, 21 | letrd 8231 |
. . . . . . 7
|
| 56 | eluz2 9689 |
. . . . . . 7
| |
| 57 | 53, 54, 55, 56 | syl3anbrc 1184 |
. . . . . 6
|
| 58 | fzss2 10221 |
. . . . . 6
| |
| 59 | 57, 58 | syl 14 |
. . . . 5
|
| 60 | 28, 59 | sstrd 3211 |
. . . 4
|
| 61 | 5 | nnzd 9529 |
. . . . . . 7
|
| 62 | 12 | nnzd 9529 |
. . . . . . 7
|
| 63 | eluz2 9689 |
. . . . . . 7
| |
| 64 | 61, 62, 20, 63 | syl3anbrc 1184 |
. . . . . 6
|
| 65 | fzss1 10220 |
. . . . . 6
| |
| 66 | 64, 65 | syl 14 |
. . . . 5
|
| 67 | 33, 66 | sstrd 3211 |
. . . 4
|
| 68 | 60, 67 | unssd 3357 |
. . 3
|
| 69 | 52, 68 | eqsstrid 3247 |
. 2
|
| 70 | isstructr 12962 |
. 2
| |
| 71 | 5, 10, 22, 45, 51, 69, 70 | syl33anc 1265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-struct 12949 |
| This theorem is referenced by: strle2g 13054 strle3g 13055 srngstrd 13093 lmodstrd 13111 ipsstrd 13123 imasvalstrd 13217 prdsvalstrd 13218 psrvalstrd 14545 |
| Copyright terms: Public domain | W3C validator |