| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strleund | Unicode version | ||
| Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
| Ref | Expression |
|---|---|
| strleund.f |
|
| strleund.g |
|
| strleund.l |
|
| Ref | Expression |
|---|---|
| strleund |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strleund.f |
. . . . 5
| |
| 2 | isstructim 12846 |
. . . . 5
| |
| 3 | 1, 2 | syl 14 |
. . . 4
|
| 4 | 3 | simp1d 1012 |
. . 3
|
| 5 | 4 | simp1d 1012 |
. 2
|
| 6 | strleund.g |
. . . . 5
| |
| 7 | isstructim 12846 |
. . . . 5
| |
| 8 | 6, 7 | syl 14 |
. . . 4
|
| 9 | 8 | simp1d 1012 |
. . 3
|
| 10 | 9 | simp2d 1013 |
. 2
|
| 11 | 5 | nnred 9049 |
. . 3
|
| 12 | 9 | simp1d 1012 |
. . . 4
|
| 13 | 12 | nnred 9049 |
. . 3
|
| 14 | 10 | nnred 9049 |
. . 3
|
| 15 | 4 | simp2d 1013 |
. . . . 5
|
| 16 | 15 | nnred 9049 |
. . . 4
|
| 17 | 4 | simp3d 1014 |
. . . 4
|
| 18 | strleund.l |
. . . . 5
| |
| 19 | 16, 13, 18 | ltled 8191 |
. . . 4
|
| 20 | 11, 16, 13, 17, 19 | letrd 8196 |
. . 3
|
| 21 | 9 | simp3d 1014 |
. . 3
|
| 22 | 11, 13, 14, 20, 21 | letrd 8196 |
. 2
|
| 23 | 3 | simp2d 1013 |
. . . 4
|
| 24 | 8 | simp2d 1013 |
. . . 4
|
| 25 | difss 3299 |
. . . . . . . 8
| |
| 26 | dmss 4877 |
. . . . . . . 8
| |
| 27 | 25, 26 | mp1i 10 |
. . . . . . 7
|
| 28 | 3 | simp3d 1014 |
. . . . . . 7
|
| 29 | 27, 28 | sstrd 3203 |
. . . . . 6
|
| 30 | difss 3299 |
. . . . . . . 8
| |
| 31 | dmss 4877 |
. . . . . . . 8
| |
| 32 | 30, 31 | mp1i 10 |
. . . . . . 7
|
| 33 | 8 | simp3d 1014 |
. . . . . . 7
|
| 34 | 32, 33 | sstrd 3203 |
. . . . . 6
|
| 35 | ss2in 3401 |
. . . . . 6
| |
| 36 | 29, 34, 35 | syl2anc 411 |
. . . . 5
|
| 37 | fzdisj 10174 |
. . . . . 6
| |
| 38 | 18, 37 | syl 14 |
. . . . 5
|
| 39 | sseq0 3502 |
. . . . 5
| |
| 40 | 36, 38, 39 | syl2anc 411 |
. . . 4
|
| 41 | funun 5315 |
. . . 4
| |
| 42 | 23, 24, 40, 41 | syl21anc 1249 |
. . 3
|
| 43 | difundir 3426 |
. . . 4
| |
| 44 | 43 | funeqi 5292 |
. . 3
|
| 45 | 42, 44 | sylibr 134 |
. 2
|
| 46 | structex 12844 |
. . . 4
| |
| 47 | 1, 46 | syl 14 |
. . 3
|
| 48 | structex 12844 |
. . . 4
| |
| 49 | 6, 48 | syl 14 |
. . 3
|
| 50 | unexg 4490 |
. . 3
| |
| 51 | 47, 49, 50 | syl2anc 411 |
. 2
|
| 52 | dmun 4885 |
. . 3
| |
| 53 | 15 | nnzd 9494 |
. . . . . . 7
|
| 54 | 10 | nnzd 9494 |
. . . . . . 7
|
| 55 | 16, 13, 14, 19, 21 | letrd 8196 |
. . . . . . 7
|
| 56 | eluz2 9654 |
. . . . . . 7
| |
| 57 | 53, 54, 55, 56 | syl3anbrc 1184 |
. . . . . 6
|
| 58 | fzss2 10186 |
. . . . . 6
| |
| 59 | 57, 58 | syl 14 |
. . . . 5
|
| 60 | 28, 59 | sstrd 3203 |
. . . 4
|
| 61 | 5 | nnzd 9494 |
. . . . . . 7
|
| 62 | 12 | nnzd 9494 |
. . . . . . 7
|
| 63 | eluz2 9654 |
. . . . . . 7
| |
| 64 | 61, 62, 20, 63 | syl3anbrc 1184 |
. . . . . 6
|
| 65 | fzss1 10185 |
. . . . . 6
| |
| 66 | 64, 65 | syl 14 |
. . . . 5
|
| 67 | 33, 66 | sstrd 3203 |
. . . 4
|
| 68 | 60, 67 | unssd 3349 |
. . 3
|
| 69 | 52, 68 | eqsstrid 3239 |
. 2
|
| 70 | isstructr 12847 |
. 2
| |
| 71 | 5, 10, 22, 45, 51, 69, 70 | syl33anc 1265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 df-struct 12834 |
| This theorem is referenced by: strle2g 12939 strle3g 12940 srngstrd 12978 lmodstrd 12996 ipsstrd 13008 imasvalstrd 13102 prdsvalstrd 13103 psrvalstrd 14430 |
| Copyright terms: Public domain | W3C validator |