| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strleund | Unicode version | ||
| Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
| Ref | Expression |
|---|---|
| strleund.f |
|
| strleund.g |
|
| strleund.l |
|
| Ref | Expression |
|---|---|
| strleund |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strleund.f |
. . . . 5
| |
| 2 | isstructim 13041 |
. . . . 5
| |
| 3 | 1, 2 | syl 14 |
. . . 4
|
| 4 | 3 | simp1d 1033 |
. . 3
|
| 5 | 4 | simp1d 1033 |
. 2
|
| 6 | strleund.g |
. . . . 5
| |
| 7 | isstructim 13041 |
. . . . 5
| |
| 8 | 6, 7 | syl 14 |
. . . 4
|
| 9 | 8 | simp1d 1033 |
. . 3
|
| 10 | 9 | simp2d 1034 |
. 2
|
| 11 | 5 | nnred 9119 |
. . 3
|
| 12 | 9 | simp1d 1033 |
. . . 4
|
| 13 | 12 | nnred 9119 |
. . 3
|
| 14 | 10 | nnred 9119 |
. . 3
|
| 15 | 4 | simp2d 1034 |
. . . . 5
|
| 16 | 15 | nnred 9119 |
. . . 4
|
| 17 | 4 | simp3d 1035 |
. . . 4
|
| 18 | strleund.l |
. . . . 5
| |
| 19 | 16, 13, 18 | ltled 8261 |
. . . 4
|
| 20 | 11, 16, 13, 17, 19 | letrd 8266 |
. . 3
|
| 21 | 9 | simp3d 1035 |
. . 3
|
| 22 | 11, 13, 14, 20, 21 | letrd 8266 |
. 2
|
| 23 | 3 | simp2d 1034 |
. . . 4
|
| 24 | 8 | simp2d 1034 |
. . . 4
|
| 25 | difss 3330 |
. . . . . . . 8
| |
| 26 | dmss 4921 |
. . . . . . . 8
| |
| 27 | 25, 26 | mp1i 10 |
. . . . . . 7
|
| 28 | 3 | simp3d 1035 |
. . . . . . 7
|
| 29 | 27, 28 | sstrd 3234 |
. . . . . 6
|
| 30 | difss 3330 |
. . . . . . . 8
| |
| 31 | dmss 4921 |
. . . . . . . 8
| |
| 32 | 30, 31 | mp1i 10 |
. . . . . . 7
|
| 33 | 8 | simp3d 1035 |
. . . . . . 7
|
| 34 | 32, 33 | sstrd 3234 |
. . . . . 6
|
| 35 | ss2in 3432 |
. . . . . 6
| |
| 36 | 29, 34, 35 | syl2anc 411 |
. . . . 5
|
| 37 | fzdisj 10244 |
. . . . . 6
| |
| 38 | 18, 37 | syl 14 |
. . . . 5
|
| 39 | sseq0 3533 |
. . . . 5
| |
| 40 | 36, 38, 39 | syl2anc 411 |
. . . 4
|
| 41 | funun 5361 |
. . . 4
| |
| 42 | 23, 24, 40, 41 | syl21anc 1270 |
. . 3
|
| 43 | difundir 3457 |
. . . 4
| |
| 44 | 43 | funeqi 5338 |
. . 3
|
| 45 | 42, 44 | sylibr 134 |
. 2
|
| 46 | structex 13039 |
. . . 4
| |
| 47 | 1, 46 | syl 14 |
. . 3
|
| 48 | structex 13039 |
. . . 4
| |
| 49 | 6, 48 | syl 14 |
. . 3
|
| 50 | unexg 4533 |
. . 3
| |
| 51 | 47, 49, 50 | syl2anc 411 |
. 2
|
| 52 | dmun 4929 |
. . 3
| |
| 53 | 15 | nnzd 9564 |
. . . . . . 7
|
| 54 | 10 | nnzd 9564 |
. . . . . . 7
|
| 55 | 16, 13, 14, 19, 21 | letrd 8266 |
. . . . . . 7
|
| 56 | eluz2 9724 |
. . . . . . 7
| |
| 57 | 53, 54, 55, 56 | syl3anbrc 1205 |
. . . . . 6
|
| 58 | fzss2 10256 |
. . . . . 6
| |
| 59 | 57, 58 | syl 14 |
. . . . 5
|
| 60 | 28, 59 | sstrd 3234 |
. . . 4
|
| 61 | 5 | nnzd 9564 |
. . . . . . 7
|
| 62 | 12 | nnzd 9564 |
. . . . . . 7
|
| 63 | eluz2 9724 |
. . . . . . 7
| |
| 64 | 61, 62, 20, 63 | syl3anbrc 1205 |
. . . . . 6
|
| 65 | fzss1 10255 |
. . . . . 6
| |
| 66 | 64, 65 | syl 14 |
. . . . 5
|
| 67 | 33, 66 | sstrd 3234 |
. . . 4
|
| 68 | 60, 67 | unssd 3380 |
. . 3
|
| 69 | 52, 68 | eqsstrid 3270 |
. 2
|
| 70 | isstructr 13042 |
. 2
| |
| 71 | 5, 10, 22, 45, 51, 69, 70 | syl33anc 1286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-struct 13029 |
| This theorem is referenced by: strle2g 13135 strle3g 13136 srngstrd 13174 lmodstrd 13192 ipsstrd 13204 imasvalstrd 13298 prdsvalstrd 13299 psrvalstrd 14626 |
| Copyright terms: Public domain | W3C validator |