| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasaddvallemg | Unicode version | ||
| Description: The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| imasaddf.f |
|
| imasaddf.e |
|
| imasaddflem.a |
|
| imasaddfnlemg.v |
|
| imasaddfnlemg.x |
|
| Ref | Expression |
|---|---|
| imasaddvallemg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5947 |
. 2
| |
| 2 | imasaddf.f |
. . . . . 6
| |
| 3 | imasaddf.e |
. . . . . 6
| |
| 4 | imasaddflem.a |
. . . . . 6
| |
| 5 | imasaddfnlemg.v |
. . . . . 6
| |
| 6 | imasaddfnlemg.x |
. . . . . 6
| |
| 7 | 2, 3, 4, 5, 6 | imasaddfnlemg 13146 |
. . . . 5
|
| 8 | fnfun 5371 |
. . . . 5
| |
| 9 | 7, 8 | syl 14 |
. . . 4
|
| 10 | 9 | 3ad2ant1 1021 |
. . 3
|
| 11 | fveq2 5576 |
. . . . . . . . . . 11
| |
| 12 | 11 | opeq1d 3825 |
. . . . . . . . . 10
|
| 13 | fvoveq1 5967 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | opeq12d 3827 |
. . . . . . . . 9
|
| 15 | 14 | sneqd 3646 |
. . . . . . . 8
|
| 16 | 15 | ssiun2s 3971 |
. . . . . . 7
|
| 17 | 16 | 3ad2ant2 1022 |
. . . . . 6
|
| 18 | fveq2 5576 |
. . . . . . . . . . . . 13
| |
| 19 | 18 | opeq2d 3826 |
. . . . . . . . . . . 12
|
| 20 | oveq2 5952 |
. . . . . . . . . . . . 13
| |
| 21 | 20 | fveq2d 5580 |
. . . . . . . . . . . 12
|
| 22 | 19, 21 | opeq12d 3827 |
. . . . . . . . . . 11
|
| 23 | 22 | sneqd 3646 |
. . . . . . . . . 10
|
| 24 | 23 | ssiun2s 3971 |
. . . . . . . . 9
|
| 25 | 24 | ralrimivw 2580 |
. . . . . . . 8
|
| 26 | ss2iun 3942 |
. . . . . . . 8
| |
| 27 | 25, 26 | syl 14 |
. . . . . . 7
|
| 28 | 27 | 3ad2ant3 1023 |
. . . . . 6
|
| 29 | 17, 28 | sstrd 3203 |
. . . . 5
|
| 30 | 4 | 3ad2ant1 1021 |
. . . . 5
|
| 31 | 29, 30 | sseqtrrd 3232 |
. . . 4
|
| 32 | fof 5498 |
. . . . . . . . . . 11
| |
| 33 | 2, 32 | syl 14 |
. . . . . . . . . 10
|
| 34 | 33 | 3ad2ant1 1021 |
. . . . . . . . 9
|
| 35 | 5 | 3ad2ant1 1021 |
. . . . . . . . 9
|
| 36 | 34, 35 | fexd 5814 |
. . . . . . . 8
|
| 37 | simp2 1001 |
. . . . . . . 8
| |
| 38 | fvexg 5595 |
. . . . . . . 8
| |
| 39 | 36, 37, 38 | syl2anc 411 |
. . . . . . 7
|
| 40 | simp3 1002 |
. . . . . . . 8
| |
| 41 | fvexg 5595 |
. . . . . . . 8
| |
| 42 | 36, 40, 41 | syl2anc 411 |
. . . . . . 7
|
| 43 | opexg 4272 |
. . . . . . 7
| |
| 44 | 39, 42, 43 | syl2anc 411 |
. . . . . 6
|
| 45 | 6 | 3ad2ant1 1021 |
. . . . . . . 8
|
| 46 | ovexg 5978 |
. . . . . . . 8
| |
| 47 | 37, 45, 40, 46 | syl3anc 1250 |
. . . . . . 7
|
| 48 | fvexg 5595 |
. . . . . . 7
| |
| 49 | 36, 47, 48 | syl2anc 411 |
. . . . . 6
|
| 50 | opexg 4272 |
. . . . . 6
| |
| 51 | 44, 49, 50 | syl2anc 411 |
. . . . 5
|
| 52 | snssg 3767 |
. . . . 5
| |
| 53 | 51, 52 | syl 14 |
. . . 4
|
| 54 | 31, 53 | mpbird 167 |
. . 3
|
| 55 | funopfv 5618 |
. . 3
| |
| 56 | 10, 54, 55 | sylc 62 |
. 2
|
| 57 | 1, 56 | eqtrid 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: imasaddval 13150 imasmulval 13153 qusaddvallemg 13165 |
| Copyright terms: Public domain | W3C validator |