| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasaddvallemg | Unicode version | ||
| Description: The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| imasaddf.f |
|
| imasaddf.e |
|
| imasaddflem.a |
|
| imasaddfnlemg.v |
|
| imasaddfnlemg.x |
|
| Ref | Expression |
|---|---|
| imasaddvallemg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5970 |
. 2
| |
| 2 | imasaddf.f |
. . . . . 6
| |
| 3 | imasaddf.e |
. . . . . 6
| |
| 4 | imasaddflem.a |
. . . . . 6
| |
| 5 | imasaddfnlemg.v |
. . . . . 6
| |
| 6 | imasaddfnlemg.x |
. . . . . 6
| |
| 7 | 2, 3, 4, 5, 6 | imasaddfnlemg 13261 |
. . . . 5
|
| 8 | fnfun 5390 |
. . . . 5
| |
| 9 | 7, 8 | syl 14 |
. . . 4
|
| 10 | 9 | 3ad2ant1 1021 |
. . 3
|
| 11 | fveq2 5599 |
. . . . . . . . . . 11
| |
| 12 | 11 | opeq1d 3839 |
. . . . . . . . . 10
|
| 13 | fvoveq1 5990 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | opeq12d 3841 |
. . . . . . . . 9
|
| 15 | 14 | sneqd 3656 |
. . . . . . . 8
|
| 16 | 15 | ssiun2s 3985 |
. . . . . . 7
|
| 17 | 16 | 3ad2ant2 1022 |
. . . . . 6
|
| 18 | fveq2 5599 |
. . . . . . . . . . . . 13
| |
| 19 | 18 | opeq2d 3840 |
. . . . . . . . . . . 12
|
| 20 | oveq2 5975 |
. . . . . . . . . . . . 13
| |
| 21 | 20 | fveq2d 5603 |
. . . . . . . . . . . 12
|
| 22 | 19, 21 | opeq12d 3841 |
. . . . . . . . . . 11
|
| 23 | 22 | sneqd 3656 |
. . . . . . . . . 10
|
| 24 | 23 | ssiun2s 3985 |
. . . . . . . . 9
|
| 25 | 24 | ralrimivw 2582 |
. . . . . . . 8
|
| 26 | ss2iun 3956 |
. . . . . . . 8
| |
| 27 | 25, 26 | syl 14 |
. . . . . . 7
|
| 28 | 27 | 3ad2ant3 1023 |
. . . . . 6
|
| 29 | 17, 28 | sstrd 3211 |
. . . . 5
|
| 30 | 4 | 3ad2ant1 1021 |
. . . . 5
|
| 31 | 29, 30 | sseqtrrd 3240 |
. . . 4
|
| 32 | fof 5520 |
. . . . . . . . . . 11
| |
| 33 | 2, 32 | syl 14 |
. . . . . . . . . 10
|
| 34 | 33 | 3ad2ant1 1021 |
. . . . . . . . 9
|
| 35 | 5 | 3ad2ant1 1021 |
. . . . . . . . 9
|
| 36 | 34, 35 | fexd 5837 |
. . . . . . . 8
|
| 37 | simp2 1001 |
. . . . . . . 8
| |
| 38 | fvexg 5618 |
. . . . . . . 8
| |
| 39 | 36, 37, 38 | syl2anc 411 |
. . . . . . 7
|
| 40 | simp3 1002 |
. . . . . . . 8
| |
| 41 | fvexg 5618 |
. . . . . . . 8
| |
| 42 | 36, 40, 41 | syl2anc 411 |
. . . . . . 7
|
| 43 | opexg 4290 |
. . . . . . 7
| |
| 44 | 39, 42, 43 | syl2anc 411 |
. . . . . 6
|
| 45 | 6 | 3ad2ant1 1021 |
. . . . . . . 8
|
| 46 | ovexg 6001 |
. . . . . . . 8
| |
| 47 | 37, 45, 40, 46 | syl3anc 1250 |
. . . . . . 7
|
| 48 | fvexg 5618 |
. . . . . . 7
| |
| 49 | 36, 47, 48 | syl2anc 411 |
. . . . . 6
|
| 50 | opexg 4290 |
. . . . . 6
| |
| 51 | 44, 49, 50 | syl2anc 411 |
. . . . 5
|
| 52 | snssg 3778 |
. . . . 5
| |
| 53 | 51, 52 | syl 14 |
. . . 4
|
| 54 | 31, 53 | mpbird 167 |
. . 3
|
| 55 | funopfv 5641 |
. . 3
| |
| 56 | 10, 54, 55 | sylc 62 |
. 2
|
| 57 | 1, 56 | eqtrid 2252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: imasaddval 13265 imasmulval 13268 qusaddvallemg 13280 |
| Copyright terms: Public domain | W3C validator |