| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasaddvallemg | Unicode version | ||
| Description: The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| imasaddf.f |
|
| imasaddf.e |
|
| imasaddflem.a |
|
| imasaddfnlemg.v |
|
| imasaddfnlemg.x |
|
| Ref | Expression |
|---|---|
| imasaddvallemg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5928 |
. 2
| |
| 2 | imasaddf.f |
. . . . . 6
| |
| 3 | imasaddf.e |
. . . . . 6
| |
| 4 | imasaddflem.a |
. . . . . 6
| |
| 5 | imasaddfnlemg.v |
. . . . . 6
| |
| 6 | imasaddfnlemg.x |
. . . . . 6
| |
| 7 | 2, 3, 4, 5, 6 | imasaddfnlemg 13016 |
. . . . 5
|
| 8 | fnfun 5356 |
. . . . 5
| |
| 9 | 7, 8 | syl 14 |
. . . 4
|
| 10 | 9 | 3ad2ant1 1020 |
. . 3
|
| 11 | fveq2 5561 |
. . . . . . . . . . 11
| |
| 12 | 11 | opeq1d 3815 |
. . . . . . . . . 10
|
| 13 | fvoveq1 5948 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | opeq12d 3817 |
. . . . . . . . 9
|
| 15 | 14 | sneqd 3636 |
. . . . . . . 8
|
| 16 | 15 | ssiun2s 3961 |
. . . . . . 7
|
| 17 | 16 | 3ad2ant2 1021 |
. . . . . 6
|
| 18 | fveq2 5561 |
. . . . . . . . . . . . 13
| |
| 19 | 18 | opeq2d 3816 |
. . . . . . . . . . . 12
|
| 20 | oveq2 5933 |
. . . . . . . . . . . . 13
| |
| 21 | 20 | fveq2d 5565 |
. . . . . . . . . . . 12
|
| 22 | 19, 21 | opeq12d 3817 |
. . . . . . . . . . 11
|
| 23 | 22 | sneqd 3636 |
. . . . . . . . . 10
|
| 24 | 23 | ssiun2s 3961 |
. . . . . . . . 9
|
| 25 | 24 | ralrimivw 2571 |
. . . . . . . 8
|
| 26 | ss2iun 3932 |
. . . . . . . 8
| |
| 27 | 25, 26 | syl 14 |
. . . . . . 7
|
| 28 | 27 | 3ad2ant3 1022 |
. . . . . 6
|
| 29 | 17, 28 | sstrd 3194 |
. . . . 5
|
| 30 | 4 | 3ad2ant1 1020 |
. . . . 5
|
| 31 | 29, 30 | sseqtrrd 3223 |
. . . 4
|
| 32 | fof 5483 |
. . . . . . . . . . 11
| |
| 33 | 2, 32 | syl 14 |
. . . . . . . . . 10
|
| 34 | 33 | 3ad2ant1 1020 |
. . . . . . . . 9
|
| 35 | 5 | 3ad2ant1 1020 |
. . . . . . . . 9
|
| 36 | 34, 35 | fexd 5795 |
. . . . . . . 8
|
| 37 | simp2 1000 |
. . . . . . . 8
| |
| 38 | fvexg 5580 |
. . . . . . . 8
| |
| 39 | 36, 37, 38 | syl2anc 411 |
. . . . . . 7
|
| 40 | simp3 1001 |
. . . . . . . 8
| |
| 41 | fvexg 5580 |
. . . . . . . 8
| |
| 42 | 36, 40, 41 | syl2anc 411 |
. . . . . . 7
|
| 43 | opexg 4262 |
. . . . . . 7
| |
| 44 | 39, 42, 43 | syl2anc 411 |
. . . . . 6
|
| 45 | 6 | 3ad2ant1 1020 |
. . . . . . . 8
|
| 46 | ovexg 5959 |
. . . . . . . 8
| |
| 47 | 37, 45, 40, 46 | syl3anc 1249 |
. . . . . . 7
|
| 48 | fvexg 5580 |
. . . . . . 7
| |
| 49 | 36, 47, 48 | syl2anc 411 |
. . . . . 6
|
| 50 | opexg 4262 |
. . . . . 6
| |
| 51 | 44, 49, 50 | syl2anc 411 |
. . . . 5
|
| 52 | snssg 3757 |
. . . . 5
| |
| 53 | 51, 52 | syl 14 |
. . . 4
|
| 54 | 31, 53 | mpbird 167 |
. . 3
|
| 55 | funopfv 5603 |
. . 3
| |
| 56 | 10, 54, 55 | sylc 62 |
. 2
|
| 57 | 1, 56 | eqtrid 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: imasaddval 13020 imasmulval 13023 qusaddvallemg 13035 |
| Copyright terms: Public domain | W3C validator |