| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imasaddvallemg | Unicode version | ||
| Description: The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| imasaddf.f | 
 | 
| imasaddf.e | 
 | 
| imasaddflem.a | 
 | 
| imasaddfnlemg.v | 
 | 
| imasaddfnlemg.x | 
 | 
| Ref | Expression | 
|---|---|
| imasaddvallemg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ov 5925 | 
. 2
 | |
| 2 | imasaddf.f | 
. . . . . 6
 | |
| 3 | imasaddf.e | 
. . . . . 6
 | |
| 4 | imasaddflem.a | 
. . . . . 6
 | |
| 5 | imasaddfnlemg.v | 
. . . . . 6
 | |
| 6 | imasaddfnlemg.x | 
. . . . . 6
 | |
| 7 | 2, 3, 4, 5, 6 | imasaddfnlemg 12957 | 
. . . . 5
 | 
| 8 | fnfun 5355 | 
. . . . 5
 | |
| 9 | 7, 8 | syl 14 | 
. . . 4
 | 
| 10 | 9 | 3ad2ant1 1020 | 
. . 3
 | 
| 11 | fveq2 5558 | 
. . . . . . . . . . 11
 | |
| 12 | 11 | opeq1d 3814 | 
. . . . . . . . . 10
 | 
| 13 | fvoveq1 5945 | 
. . . . . . . . . 10
 | |
| 14 | 12, 13 | opeq12d 3816 | 
. . . . . . . . 9
 | 
| 15 | 14 | sneqd 3635 | 
. . . . . . . 8
 | 
| 16 | 15 | ssiun2s 3960 | 
. . . . . . 7
 | 
| 17 | 16 | 3ad2ant2 1021 | 
. . . . . 6
 | 
| 18 | fveq2 5558 | 
. . . . . . . . . . . . 13
 | |
| 19 | 18 | opeq2d 3815 | 
. . . . . . . . . . . 12
 | 
| 20 | oveq2 5930 | 
. . . . . . . . . . . . 13
 | |
| 21 | 20 | fveq2d 5562 | 
. . . . . . . . . . . 12
 | 
| 22 | 19, 21 | opeq12d 3816 | 
. . . . . . . . . . 11
 | 
| 23 | 22 | sneqd 3635 | 
. . . . . . . . . 10
 | 
| 24 | 23 | ssiun2s 3960 | 
. . . . . . . . 9
 | 
| 25 | 24 | ralrimivw 2571 | 
. . . . . . . 8
 | 
| 26 | ss2iun 3931 | 
. . . . . . . 8
 | |
| 27 | 25, 26 | syl 14 | 
. . . . . . 7
 | 
| 28 | 27 | 3ad2ant3 1022 | 
. . . . . 6
 | 
| 29 | 17, 28 | sstrd 3193 | 
. . . . 5
 | 
| 30 | 4 | 3ad2ant1 1020 | 
. . . . 5
 | 
| 31 | 29, 30 | sseqtrrd 3222 | 
. . . 4
 | 
| 32 | fof 5480 | 
. . . . . . . . . . 11
 | |
| 33 | 2, 32 | syl 14 | 
. . . . . . . . . 10
 | 
| 34 | 33 | 3ad2ant1 1020 | 
. . . . . . . . 9
 | 
| 35 | 5 | 3ad2ant1 1020 | 
. . . . . . . . 9
 | 
| 36 | 34, 35 | fexd 5792 | 
. . . . . . . 8
 | 
| 37 | simp2 1000 | 
. . . . . . . 8
 | |
| 38 | fvexg 5577 | 
. . . . . . . 8
 | |
| 39 | 36, 37, 38 | syl2anc 411 | 
. . . . . . 7
 | 
| 40 | simp3 1001 | 
. . . . . . . 8
 | |
| 41 | fvexg 5577 | 
. . . . . . . 8
 | |
| 42 | 36, 40, 41 | syl2anc 411 | 
. . . . . . 7
 | 
| 43 | opexg 4261 | 
. . . . . . 7
 | |
| 44 | 39, 42, 43 | syl2anc 411 | 
. . . . . 6
 | 
| 45 | 6 | 3ad2ant1 1020 | 
. . . . . . . 8
 | 
| 46 | ovexg 5956 | 
. . . . . . . 8
 | |
| 47 | 37, 45, 40, 46 | syl3anc 1249 | 
. . . . . . 7
 | 
| 48 | fvexg 5577 | 
. . . . . . 7
 | |
| 49 | 36, 47, 48 | syl2anc 411 | 
. . . . . 6
 | 
| 50 | opexg 4261 | 
. . . . . 6
 | |
| 51 | 44, 49, 50 | syl2anc 411 | 
. . . . 5
 | 
| 52 | snssg 3756 | 
. . . . 5
 | |
| 53 | 51, 52 | syl 14 | 
. . . 4
 | 
| 54 | 31, 53 | mpbird 167 | 
. . 3
 | 
| 55 | funopfv 5600 | 
. . 3
 | |
| 56 | 10, 54, 55 | sylc 62 | 
. 2
 | 
| 57 | 1, 56 | eqtrid 2241 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: imasaddval 12961 imasmulval 12964 qusaddvallemg 12976 | 
| Copyright terms: Public domain | W3C validator |