| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasaddvallemg | Unicode version | ||
| Description: The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| imasaddf.f |
|
| imasaddf.e |
|
| imasaddflem.a |
|
| imasaddfnlemg.v |
|
| imasaddfnlemg.x |
|
| Ref | Expression |
|---|---|
| imasaddvallemg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 6004 |
. 2
| |
| 2 | imasaddf.f |
. . . . . 6
| |
| 3 | imasaddf.e |
. . . . . 6
| |
| 4 | imasaddflem.a |
. . . . . 6
| |
| 5 | imasaddfnlemg.v |
. . . . . 6
| |
| 6 | imasaddfnlemg.x |
. . . . . 6
| |
| 7 | 2, 3, 4, 5, 6 | imasaddfnlemg 13347 |
. . . . 5
|
| 8 | fnfun 5418 |
. . . . 5
| |
| 9 | 7, 8 | syl 14 |
. . . 4
|
| 10 | 9 | 3ad2ant1 1042 |
. . 3
|
| 11 | fveq2 5627 |
. . . . . . . . . . 11
| |
| 12 | 11 | opeq1d 3863 |
. . . . . . . . . 10
|
| 13 | fvoveq1 6024 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | opeq12d 3865 |
. . . . . . . . 9
|
| 15 | 14 | sneqd 3679 |
. . . . . . . 8
|
| 16 | 15 | ssiun2s 4009 |
. . . . . . 7
|
| 17 | 16 | 3ad2ant2 1043 |
. . . . . 6
|
| 18 | fveq2 5627 |
. . . . . . . . . . . . 13
| |
| 19 | 18 | opeq2d 3864 |
. . . . . . . . . . . 12
|
| 20 | oveq2 6009 |
. . . . . . . . . . . . 13
| |
| 21 | 20 | fveq2d 5631 |
. . . . . . . . . . . 12
|
| 22 | 19, 21 | opeq12d 3865 |
. . . . . . . . . . 11
|
| 23 | 22 | sneqd 3679 |
. . . . . . . . . 10
|
| 24 | 23 | ssiun2s 4009 |
. . . . . . . . 9
|
| 25 | 24 | ralrimivw 2604 |
. . . . . . . 8
|
| 26 | ss2iun 3980 |
. . . . . . . 8
| |
| 27 | 25, 26 | syl 14 |
. . . . . . 7
|
| 28 | 27 | 3ad2ant3 1044 |
. . . . . 6
|
| 29 | 17, 28 | sstrd 3234 |
. . . . 5
|
| 30 | 4 | 3ad2ant1 1042 |
. . . . 5
|
| 31 | 29, 30 | sseqtrrd 3263 |
. . . 4
|
| 32 | fof 5548 |
. . . . . . . . . . 11
| |
| 33 | 2, 32 | syl 14 |
. . . . . . . . . 10
|
| 34 | 33 | 3ad2ant1 1042 |
. . . . . . . . 9
|
| 35 | 5 | 3ad2ant1 1042 |
. . . . . . . . 9
|
| 36 | 34, 35 | fexd 5869 |
. . . . . . . 8
|
| 37 | simp2 1022 |
. . . . . . . 8
| |
| 38 | fvexg 5646 |
. . . . . . . 8
| |
| 39 | 36, 37, 38 | syl2anc 411 |
. . . . . . 7
|
| 40 | simp3 1023 |
. . . . . . . 8
| |
| 41 | fvexg 5646 |
. . . . . . . 8
| |
| 42 | 36, 40, 41 | syl2anc 411 |
. . . . . . 7
|
| 43 | opexg 4314 |
. . . . . . 7
| |
| 44 | 39, 42, 43 | syl2anc 411 |
. . . . . 6
|
| 45 | 6 | 3ad2ant1 1042 |
. . . . . . . 8
|
| 46 | ovexg 6035 |
. . . . . . . 8
| |
| 47 | 37, 45, 40, 46 | syl3anc 1271 |
. . . . . . 7
|
| 48 | fvexg 5646 |
. . . . . . 7
| |
| 49 | 36, 47, 48 | syl2anc 411 |
. . . . . 6
|
| 50 | opexg 4314 |
. . . . . 6
| |
| 51 | 44, 49, 50 | syl2anc 411 |
. . . . 5
|
| 52 | snssg 3802 |
. . . . 5
| |
| 53 | 51, 52 | syl 14 |
. . . 4
|
| 54 | 31, 53 | mpbird 167 |
. . 3
|
| 55 | funopfv 5671 |
. . 3
| |
| 56 | 10, 54, 55 | sylc 62 |
. 2
|
| 57 | 1, 56 | eqtrid 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: imasaddval 13351 imasmulval 13354 qusaddvallemg 13366 |
| Copyright terms: Public domain | W3C validator |