ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiu1 Unicode version

Theorem nfiu1 3942
Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.)
Assertion
Ref Expression
nfiu1  |-  F/_ x U_ x  e.  A  B

Proof of Theorem nfiu1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-iun 3914 . 2  |-  U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
2 nfre1 2537 . . 3  |-  F/ x E. x  e.  A  y  e.  B
32nfab 2341 . 2  |-  F/_ x { y  |  E. x  e.  A  y  e.  B }
41, 3nfcxfr 2333 1  |-  F/_ x U_ x  e.  A  B
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   {cab 2179   F/_wnfc 2323   E.wrex 2473   U_ciun 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-iun 3914
This theorem is referenced by:  ssiun2s  3956  triun  4140  eliunxp  4801  opeliunxp2  4802  opeliunxp2f  6291  ixpf  6774  ctiunctlemfo  12596
  Copyright terms: Public domain W3C validator