ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiu1 Unicode version

Theorem nfiu1 3994
Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.)
Assertion
Ref Expression
nfiu1  |-  F/_ x U_ x  e.  A  B

Proof of Theorem nfiu1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-iun 3966 . 2  |-  U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
2 nfre1 2573 . . 3  |-  F/ x E. x  e.  A  y  e.  B
32nfab 2377 . 2  |-  F/_ x { y  |  E. x  e.  A  y  e.  B }
41, 3nfcxfr 2369 1  |-  F/_ x U_ x  e.  A  B
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   {cab 2215   F/_wnfc 2359   E.wrex 2509   U_ciun 3964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-iun 3966
This theorem is referenced by:  ssiun2s  4008  triun  4194  eliunxp  4858  opeliunxp2  4859  opeliunxp2f  6374  ixpf  6857  ctiunctlemfo  12996
  Copyright terms: Public domain W3C validator