ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclgaf Unicode version

Theorem vtoclgaf 2795
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypotheses
Ref Expression
vtoclgaf.1  |-  F/_ x A
vtoclgaf.2  |-  F/ x ps
vtoclgaf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclgaf.4  |-  ( x  e.  B  ->  ph )
Assertion
Ref Expression
vtoclgaf  |-  ( A  e.  B  ->  ps )
Distinct variable group:    x, B
Allowed substitution hints:    ph( x)    ps( x)    A( x)

Proof of Theorem vtoclgaf
StepHypRef Expression
1 vtoclgaf.1 . . 3  |-  F/_ x A
21nfel1 2323 . . . 4  |-  F/ x  A  e.  B
3 vtoclgaf.2 . . . 4  |-  F/ x ps
42, 3nfim 1565 . . 3  |-  F/ x
( A  e.  B  ->  ps )
5 eleq1 2233 . . . 4  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
6 vtoclgaf.3 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
75, 6imbi12d 233 . . 3  |-  ( x  =  A  ->  (
( x  e.  B  ->  ph )  <->  ( A  e.  B  ->  ps )
) )
8 vtoclgaf.4 . . 3  |-  ( x  e.  B  ->  ph )
91, 4, 7, 8vtoclgf 2788 . 2  |-  ( A  e.  B  ->  ( A  e.  B  ->  ps ) )
109pm2.43i 49 1  |-  ( A  e.  B  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   F/wnf 1453    e. wcel 2141   F/_wnfc 2299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  vtoclga  2796  ssiun2s  3917  tfis  4567  fvmptf  5588  fmptco  5662  prmind2  12074
  Copyright terms: Public domain W3C validator