![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtoclgaf | Unicode version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
vtoclgaf.1 |
![]() ![]() ![]() ![]() |
vtoclgaf.2 |
![]() ![]() ![]() ![]() |
vtoclgaf.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtoclgaf.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
vtoclgaf |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclgaf.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | nfel1 2251 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
3 | vtoclgaf.2 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 2, 3 | nfim 1519 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | eleq1 2162 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | vtoclgaf.3 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | imbi12d 233 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | vtoclgaf.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 1, 4, 7, 8 | vtoclgf 2699 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9 | pm2.43i 49 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 |
This theorem is referenced by: vtoclga 2707 ssiun2s 3804 tfis 4435 fvmptf 5445 fmptco 5518 prmind2 11594 |
Copyright terms: Public domain | W3C validator |