Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssiun2s | GIF version |
Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
ssiun2s.1 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
ssiun2s | ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐶 | |
2 | nfcv 2308 | . . 3 ⊢ Ⅎ𝑥𝐷 | |
3 | nfiu1 3896 | . . 3 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
4 | 2, 3 | nfss 3135 | . 2 ⊢ Ⅎ𝑥 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
5 | ssiun2s.1 | . . 3 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) | |
6 | 5 | sseq1d 3171 | . 2 ⊢ (𝑥 = 𝐶 → (𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
7 | ssiun2 3909 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
8 | 1, 4, 6, 7 | vtoclgaf 2791 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 ∪ ciun 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-iun 3868 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |