ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssiun2s GIF version

Theorem ssiun2s 3956
Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.)
Hypothesis
Ref Expression
ssiun2s.1 (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
ssiun2s (𝐶𝐴𝐷 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ssiun2s
StepHypRef Expression
1 nfcv 2336 . 2 𝑥𝐶
2 nfcv 2336 . . 3 𝑥𝐷
3 nfiu1 3942 . . 3 𝑥 𝑥𝐴 𝐵
42, 3nfss 3172 . 2 𝑥 𝐷 𝑥𝐴 𝐵
5 ssiun2s.1 . . 3 (𝑥 = 𝐶𝐵 = 𝐷)
65sseq1d 3208 . 2 (𝑥 = 𝐶 → (𝐵 𝑥𝐴 𝐵𝐷 𝑥𝐴 𝐵))
7 ssiun2 3955 . 2 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
81, 4, 6, 7vtoclgaf 2825 1 (𝐶𝐴𝐷 𝑥𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wss 3153   ciun 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-iun 3914
This theorem is referenced by:  imasaddvallemg  12898
  Copyright terms: Public domain W3C validator