ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssiun2s GIF version

Theorem ssiun2s 3985
Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.)
Hypothesis
Ref Expression
ssiun2s.1 (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
ssiun2s (𝐶𝐴𝐷 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ssiun2s
StepHypRef Expression
1 nfcv 2350 . 2 𝑥𝐶
2 nfcv 2350 . . 3 𝑥𝐷
3 nfiu1 3971 . . 3 𝑥 𝑥𝐴 𝐵
42, 3nfss 3194 . 2 𝑥 𝐷 𝑥𝐴 𝐵
5 ssiun2s.1 . . 3 (𝑥 = 𝐶𝐵 = 𝐷)
65sseq1d 3230 . 2 (𝑥 = 𝐶 → (𝐵 𝑥𝐴 𝐵𝐷 𝑥𝐴 𝐵))
7 ssiun2 3984 . 2 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
81, 4, 6, 7vtoclgaf 2843 1 (𝐶𝐴𝐷 𝑥𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178  wss 3174   ciun 3941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-iun 3943
This theorem is referenced by:  imasaddvallemg  13262
  Copyright terms: Public domain W3C validator