ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumdc Unicode version

Theorem sumdc 11368
Description: Decidability of a subset of upper integers. (Contributed by Jim Kingdon, 1-Jan-2022.)
Hypotheses
Ref Expression
sumdc.m  |-  ( ph  ->  M  e.  ZZ )
sumdc.ss  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
sumdc.dc  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M )DECID  x  e.  A )
sumdc.n  |-  ( ph  ->  N  e.  ZZ )
Assertion
Ref Expression
sumdc  |-  ( ph  -> DECID  N  e.  A )
Distinct variable groups:    x, A    x, M    x, N
Allowed substitution hint:    ph( x)

Proof of Theorem sumdc
StepHypRef Expression
1 sumdc.dc . . 3  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M )DECID  x  e.  A )
2 eleq1 2240 . . . . 5  |-  ( x  =  N  ->  (
x  e.  A  <->  N  e.  A ) )
32dcbid 838 . . . 4  |-  ( x  =  N  ->  (DECID  x  e.  A  <-> DECID  N  e.  A )
)
43rspcv 2839 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( ZZ>= `  M )DECID  x  e.  A  -> DECID  N  e.  A ) )
51, 4mpan9 281 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  -> DECID  N  e.  A
)
6 sumdc.ss . . . . . 6  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
76ssneld 3159 . . . . 5  |-  ( ph  ->  ( -.  N  e.  ( ZZ>= `  M )  ->  -.  N  e.  A
) )
87imp 124 . . . 4  |-  ( (
ph  /\  -.  N  e.  ( ZZ>= `  M )
)  ->  -.  N  e.  A )
98olcd 734 . . 3  |-  ( (
ph  /\  -.  N  e.  ( ZZ>= `  M )
)  ->  ( N  e.  A  \/  -.  N  e.  A )
)
10 df-dc 835 . . 3  |-  (DECID  N  e.  A  <->  ( N  e.  A  \/  -.  N  e.  A ) )
119, 10sylibr 134 . 2  |-  ( (
ph  /\  -.  N  e.  ( ZZ>= `  M )
)  -> DECID  N  e.  A
)
12 sumdc.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
13 sumdc.n . . . 4  |-  ( ph  ->  N  e.  ZZ )
14 eluzdc 9612 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  e.  ( ZZ>= `  M
) )
1512, 13, 14syl2anc 411 . . 3  |-  ( ph  -> DECID  N  e.  ( ZZ>= `  M
) )
16 exmiddc 836 . . 3  |-  (DECID  N  e.  ( ZZ>= `  M )  ->  ( N  e.  (
ZZ>= `  M )  \/ 
-.  N  e.  (
ZZ>= `  M ) ) )
1715, 16syl 14 . 2  |-  ( ph  ->  ( N  e.  (
ZZ>= `  M )  \/ 
-.  N  e.  (
ZZ>= `  M ) ) )
185, 11, 17mpjaodan 798 1  |-  ( ph  -> DECID  N  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3131   ` cfv 5218   ZZcz 9255   ZZ>=cuz 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531
This theorem is referenced by:  sumeq2  11369  prodeq2  11567
  Copyright terms: Public domain W3C validator