ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumss2 Unicode version

Theorem isumss2 10781
Description: Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set  A and the added zeroes compose the rest of the containing set  B which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
Hypotheses
Ref Expression
isumss2.ss  |-  ( ph  ->  A  C_  B )
isumss2.adc  |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )
isumss2.c  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
isumss2.b  |-  ( ph  ->  ( ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B )  \/  B  e.  Fin ) )
Assertion
Ref Expression
isumss2  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  if ( k  e.  A ,  C ,  0 ) )
Distinct variable groups:    A, j    A, k    B, j    B, k   
j, M
Allowed substitution hints:    ph( j, k)    C( j, k)    M( k)

Proof of Theorem isumss2
Dummy variables  a  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumss2.ss . . . . 5  |-  ( ph  ->  A  C_  B )
21adantr 270 . . . 4  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A  C_  B )
3 isumss2.c . . . . . 6  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
4 iftrue 3398 . . . . . . . 8  |-  ( m  e.  A  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  [_ m  / 
k ]_ C )
54adantl 271 . . . . . . 7  |-  ( ( A. k  e.  A  C  e.  CC  /\  m  e.  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  [_ m  / 
k ]_ C )
6 nfcsb1v 2963 . . . . . . . . . 10  |-  F/_ k [_ m  /  k ]_ C
76nfel1 2239 . . . . . . . . 9  |-  F/ k
[_ m  /  k ]_ C  e.  CC
8 csbeq1a 2941 . . . . . . . . . 10  |-  ( k  =  m  ->  C  =  [_ m  /  k ]_ C )
98eleq1d 2156 . . . . . . . . 9  |-  ( k  =  m  ->  ( C  e.  CC  <->  [_ m  / 
k ]_ C  e.  CC ) )
107, 9rspc 2716 . . . . . . . 8  |-  ( m  e.  A  ->  ( A. k  e.  A  C  e.  CC  ->  [_ m  /  k ]_ C  e.  CC )
)
1110impcom 123 . . . . . . 7  |-  ( ( A. k  e.  A  C  e.  CC  /\  m  e.  A )  ->  [_ m  /  k ]_ C  e.  CC )
125, 11eqeltrd 2164 . . . . . 6  |-  ( ( A. k  e.  A  C  e.  CC  /\  m  e.  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )
133, 12sylan 277 . . . . 5  |-  ( (
ph  /\  m  e.  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )
1413adantlr 461 . . . 4  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  m  e.  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )
15 eldifn 3123 . . . . . 6  |-  ( m  e.  ( B  \  A )  ->  -.  m  e.  A )
1615iffalsed 3403 . . . . 5  |-  ( m  e.  ( B  \  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  0 )
1716adantl 271 . . . 4  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  m  e.  ( B  \  A ) )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  0 )
18 isumss2.adc . . . . . . . . . 10  |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )
1918adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A. j  e.  B DECID  j  e.  A )
20 eleq1w 2148 . . . . . . . . . . 11  |-  ( j  =  a  ->  (
j  e.  A  <->  a  e.  A ) )
2120dcbid 786 . . . . . . . . . 10  |-  ( j  =  a  ->  (DECID  j  e.  A  <-> DECID  a  e.  A )
)
2221cbvralv 2590 . . . . . . . . 9  |-  ( A. j  e.  B DECID  j  e.  A 
<-> 
A. a  e.  B DECID  a  e.  A )
2319, 22sylib 120 . . . . . . . 8  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A. a  e.  B DECID  a  e.  A )
2423r19.21bi 2461 . . . . . . 7  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  B )  -> DECID  a  e.  A )
2524adantlr 461 . . . . . 6  |-  ( ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M )
)  /\  a  e.  B )  -> DECID  a  e.  A
)
262adantr 270 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  ->  A  C_  B )
2726ssneld 3027 . . . . . . . . 9  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  -> 
( -.  a  e.  B  ->  -.  a  e.  A ) )
2827imp 122 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M )
)  /\  -.  a  e.  B )  ->  -.  a  e.  A )
2928olcd 688 . . . . . . 7  |-  ( ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M )
)  /\  -.  a  e.  B )  ->  (
a  e.  A  \/  -.  a  e.  A
) )
30 df-dc 781 . . . . . . 7  |-  (DECID  a  e.  A  <->  ( a  e.  A  \/  -.  a  e.  A ) )
3129, 30sylibr 132 . . . . . 6  |-  ( ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M )
)  /\  -.  a  e.  B )  -> DECID  a  e.  A
)
32 eleq1w 2148 . . . . . . . . 9  |-  ( j  =  a  ->  (
j  e.  B  <->  a  e.  B ) )
3332dcbid 786 . . . . . . . 8  |-  ( j  =  a  ->  (DECID  j  e.  B  <-> DECID  a  e.  B )
)
34 simplr3 987 . . . . . . . 8  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  ->  A. j  e.  ( ZZ>=
`  M )DECID  j  e.  B )
35 simpr 108 . . . . . . . 8  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  -> 
a  e.  ( ZZ>= `  M ) )
3633, 34, 35rspcdva 2727 . . . . . . 7  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  -> DECID  a  e.  B )
37 exmiddc 782 . . . . . . 7  |-  (DECID  a  e.  B  ->  ( a  e.  B  \/  -.  a  e.  B )
)
3836, 37syl 14 . . . . . 6  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  -> 
( a  e.  B  \/  -.  a  e.  B
) )
3925, 31, 38mpjaodan 747 . . . . 5  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  -> DECID  a  e.  A )
4039ralrimiva 2446 . . . 4  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A. a  e.  ( ZZ>=
`  M )DECID  a  e.  A )
41 simpr1 949 . . . 4  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  M  e.  ZZ )
42 simpr2 950 . . . 4  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  B  C_  ( ZZ>= `  M
) )
43 simpr3 951 . . . . 5  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A. j  e.  ( ZZ>=
`  M )DECID  j  e.  B )
4433cbvralv 2590 . . . . 5  |-  ( A. j  e.  ( ZZ>= `  M )DECID  j  e.  B  <->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  B )
4543, 44sylib 120 . . . 4  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A. a  e.  ( ZZ>=
`  M )DECID  a  e.  B )
462, 14, 17, 40, 41, 42, 45isumss 10779 . . 3  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  sum_ m  e.  A  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  sum_ m  e.  B  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
471adantr 270 . . . 4  |-  ( (
ph  /\  B  e.  Fin )  ->  A  C_  B )
4813adantlr 461 . . . 4  |-  ( ( ( ph  /\  B  e.  Fin )  /\  m  e.  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )
4916adantl 271 . . . 4  |-  ( ( ( ph  /\  B  e.  Fin )  /\  m  e.  ( B  \  A
) )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  0 )
5018adantr 270 . . . 4  |-  ( (
ph  /\  B  e.  Fin )  ->  A. j  e.  B DECID  j  e.  A
)
51 simpr 108 . . . 4  |-  ( (
ph  /\  B  e.  Fin )  ->  B  e. 
Fin )
5247, 48, 49, 50, 51fisumss 10780 . . 3  |-  ( (
ph  /\  B  e.  Fin )  ->  sum_ m  e.  A  if (
m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  sum_ m  e.  B  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
53 isumss2.b . . 3  |-  ( ph  ->  ( ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B )  \/  B  e.  Fin ) )
5446, 52, 53mpjaodan 747 . 2  |-  ( ph  -> 
sum_ m  e.  A  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  sum_ m  e.  B  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
55 iftrue 3398 . . . 4  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  C )
5655sumeq2i 10749 . . 3  |-  sum_ k  e.  A  if (
k  e.  A ,  C ,  0 )  =  sum_ k  e.  A  C
57 nfcv 2228 . . . 4  |-  F/_ m if ( k  e.  A ,  C ,  0 )
58 nfv 1466 . . . . 5  |-  F/ k  m  e.  A
59 nfcv 2228 . . . . 5  |-  F/_ k
0
6058, 6, 59nfif 3419 . . . 4  |-  F/_ k if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )
61 eleq1w 2148 . . . . 5  |-  ( k  =  m  ->  (
k  e.  A  <->  m  e.  A ) )
6261, 8ifbieq1d 3413 . . . 4  |-  ( k  =  m  ->  if ( k  e.  A ,  C ,  0 )  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
6357, 60, 62cbvsumi 10747 . . 3  |-  sum_ k  e.  A  if (
k  e.  A ,  C ,  0 )  =  sum_ m  e.  A  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )
6456, 63eqtr3i 2110 . 2  |-  sum_ k  e.  A  C  =  sum_ m  e.  A  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )
6557, 60, 62cbvsumi 10747 . 2  |-  sum_ k  e.  B  if (
k  e.  A ,  C ,  0 )  =  sum_ m  e.  B  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )
6654, 64, 653eqtr4g 2145 1  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  if ( k  e.  A ,  C ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 664  DECID wdc 780    /\ w3a 924    = wceq 1289    e. wcel 1438   A.wral 2359   [_csb 2933    \ cdif 2996    C_ wss 2999   ifcif 3393   ` cfv 5015   Fincfn 6455   CCcc 7346   0cc0 7348   ZZcz 8748   ZZ>=cuz 9017   sum_csu 10738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-mulrcl 7442  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-precex 7453  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459  ax-pre-mulgt0 7460  ax-pre-mulext 7461  ax-arch 7462  ax-caucvg 7463
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-isom 5024  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-frec 6156  df-1o 6181  df-oadd 6185  df-er 6290  df-en 6456  df-dom 6457  df-fin 6458  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-reap 8050  df-ap 8057  df-div 8138  df-inn 8421  df-2 8479  df-3 8480  df-4 8481  df-n0 8672  df-z 8749  df-uz 9018  df-q 9103  df-rp 9133  df-fz 9423  df-fzo 9550  df-iseq 9849  df-seq3 9850  df-exp 9951  df-ihash 10180  df-cj 10272  df-re 10273  df-im 10274  df-rsqrt 10427  df-abs 10428  df-clim 10663  df-isum 10739
This theorem is referenced by:  fsumsplit  10797  sumsplitdc  10822  isumlessdc  10886
  Copyright terms: Public domain W3C validator