| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isumss2 | Unicode version | ||
| Description: Change the index set of a
sum by adding zeroes. The nonzero elements
are in the contained set |
| Ref | Expression |
|---|---|
| isumss2.ss |
|
| isumss2.adc |
|
| isumss2.c |
|
| isumss2.b |
|
| Ref | Expression |
|---|---|
| isumss2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumss2.ss |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | isumss2.c |
. . . . . 6
| |
| 4 | iftrue 3580 |
. . . . . . . 8
| |
| 5 | 4 | adantl 277 |
. . . . . . 7
|
| 6 | nfcsb1v 3130 |
. . . . . . . . . 10
| |
| 7 | 6 | nfel1 2360 |
. . . . . . . . 9
|
| 8 | csbeq1a 3106 |
. . . . . . . . . 10
| |
| 9 | 8 | eleq1d 2275 |
. . . . . . . . 9
|
| 10 | 7, 9 | rspc 2875 |
. . . . . . . 8
|
| 11 | 10 | impcom 125 |
. . . . . . 7
|
| 12 | 5, 11 | eqeltrd 2283 |
. . . . . 6
|
| 13 | 3, 12 | sylan 283 |
. . . . 5
|
| 14 | 13 | adantlr 477 |
. . . 4
|
| 15 | eldifn 3300 |
. . . . . 6
| |
| 16 | 15 | iffalsed 3585 |
. . . . 5
|
| 17 | 16 | adantl 277 |
. . . 4
|
| 18 | isumss2.adc |
. . . . . . . . . 10
| |
| 19 | 18 | adantr 276 |
. . . . . . . . 9
|
| 20 | eleq1w 2267 |
. . . . . . . . . . 11
| |
| 21 | 20 | dcbid 840 |
. . . . . . . . . 10
|
| 22 | 21 | cbvralv 2739 |
. . . . . . . . 9
|
| 23 | 19, 22 | sylib 122 |
. . . . . . . 8
|
| 24 | 23 | r19.21bi 2595 |
. . . . . . 7
|
| 25 | 24 | adantlr 477 |
. . . . . 6
|
| 26 | 2 | adantr 276 |
. . . . . . . . . 10
|
| 27 | 26 | ssneld 3199 |
. . . . . . . . 9
|
| 28 | 27 | imp 124 |
. . . . . . . 8
|
| 29 | 28 | olcd 736 |
. . . . . . 7
|
| 30 | df-dc 837 |
. . . . . . 7
| |
| 31 | 29, 30 | sylibr 134 |
. . . . . 6
|
| 32 | eleq1w 2267 |
. . . . . . . . 9
| |
| 33 | 32 | dcbid 840 |
. . . . . . . 8
|
| 34 | simplr3 1044 |
. . . . . . . 8
| |
| 35 | simpr 110 |
. . . . . . . 8
| |
| 36 | 33, 34, 35 | rspcdva 2886 |
. . . . . . 7
|
| 37 | exmiddc 838 |
. . . . . . 7
| |
| 38 | 36, 37 | syl 14 |
. . . . . 6
|
| 39 | 25, 31, 38 | mpjaodan 800 |
. . . . 5
|
| 40 | 39 | ralrimiva 2580 |
. . . 4
|
| 41 | simpr1 1006 |
. . . 4
| |
| 42 | simpr2 1007 |
. . . 4
| |
| 43 | simpr3 1008 |
. . . . 5
| |
| 44 | 33 | cbvralv 2739 |
. . . . 5
|
| 45 | 43, 44 | sylib 122 |
. . . 4
|
| 46 | 2, 14, 17, 40, 41, 42, 45 | isumss 11787 |
. . 3
|
| 47 | 1 | adantr 276 |
. . . 4
|
| 48 | 13 | adantlr 477 |
. . . 4
|
| 49 | 16 | adantl 277 |
. . . 4
|
| 50 | 18 | adantr 276 |
. . . 4
|
| 51 | simpr 110 |
. . . 4
| |
| 52 | 47, 48, 49, 50, 51 | fisumss 11788 |
. . 3
|
| 53 | isumss2.b |
. . 3
| |
| 54 | 46, 52, 53 | mpjaodan 800 |
. 2
|
| 55 | iftrue 3580 |
. . . 4
| |
| 56 | 55 | sumeq2i 11760 |
. . 3
|
| 57 | nfcv 2349 |
. . . 4
| |
| 58 | nfv 1552 |
. . . . 5
| |
| 59 | nfcv 2349 |
. . . . 5
| |
| 60 | 58, 6, 59 | nfif 3604 |
. . . 4
|
| 61 | eleq1w 2267 |
. . . . 5
| |
| 62 | 61, 8 | ifbieq1d 3598 |
. . . 4
|
| 63 | 57, 60, 62 | cbvsumi 11758 |
. . 3
|
| 64 | 56, 63 | eqtr3i 2229 |
. 2
|
| 65 | 57, 60, 62 | cbvsumi 11758 |
. 2
|
| 66 | 54, 64, 65 | 3eqtr4g 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-frec 6495 df-1o 6520 df-oadd 6524 df-er 6638 df-en 6846 df-dom 6847 df-fin 6848 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-n0 9326 df-z 9403 df-uz 9679 df-q 9771 df-rp 9806 df-fz 10161 df-fzo 10295 df-seqfrec 10625 df-exp 10716 df-ihash 10953 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-clim 11675 df-sumdc 11750 |
| This theorem is referenced by: fsumsplit 11803 sumsplitdc 11828 isumlessdc 11892 sumhashdc 12755 |
| Copyright terms: Public domain | W3C validator |