ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumss2 Unicode version

Theorem isumss2 11117
Description: Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set  A and the added zeroes compose the rest of the containing set  B which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
Hypotheses
Ref Expression
isumss2.ss  |-  ( ph  ->  A  C_  B )
isumss2.adc  |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )
isumss2.c  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
isumss2.b  |-  ( ph  ->  ( ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B )  \/  B  e.  Fin ) )
Assertion
Ref Expression
isumss2  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  if ( k  e.  A ,  C ,  0 ) )
Distinct variable groups:    A, j    A, k    B, j    B, k   
j, M
Allowed substitution hints:    ph( j, k)    C( j, k)    M( k)

Proof of Theorem isumss2
Dummy variables  a  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumss2.ss . . . . 5  |-  ( ph  ->  A  C_  B )
21adantr 274 . . . 4  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A  C_  B )
3 isumss2.c . . . . . 6  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
4 iftrue 3449 . . . . . . . 8  |-  ( m  e.  A  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  [_ m  / 
k ]_ C )
54adantl 275 . . . . . . 7  |-  ( ( A. k  e.  A  C  e.  CC  /\  m  e.  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  [_ m  / 
k ]_ C )
6 nfcsb1v 3005 . . . . . . . . . 10  |-  F/_ k [_ m  /  k ]_ C
76nfel1 2269 . . . . . . . . 9  |-  F/ k
[_ m  /  k ]_ C  e.  CC
8 csbeq1a 2983 . . . . . . . . . 10  |-  ( k  =  m  ->  C  =  [_ m  /  k ]_ C )
98eleq1d 2186 . . . . . . . . 9  |-  ( k  =  m  ->  ( C  e.  CC  <->  [_ m  / 
k ]_ C  e.  CC ) )
107, 9rspc 2757 . . . . . . . 8  |-  ( m  e.  A  ->  ( A. k  e.  A  C  e.  CC  ->  [_ m  /  k ]_ C  e.  CC )
)
1110impcom 124 . . . . . . 7  |-  ( ( A. k  e.  A  C  e.  CC  /\  m  e.  A )  ->  [_ m  /  k ]_ C  e.  CC )
125, 11eqeltrd 2194 . . . . . 6  |-  ( ( A. k  e.  A  C  e.  CC  /\  m  e.  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )
133, 12sylan 281 . . . . 5  |-  ( (
ph  /\  m  e.  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )
1413adantlr 468 . . . 4  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  m  e.  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )
15 eldifn 3169 . . . . . 6  |-  ( m  e.  ( B  \  A )  ->  -.  m  e.  A )
1615iffalsed 3454 . . . . 5  |-  ( m  e.  ( B  \  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  0 )
1716adantl 275 . . . 4  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  m  e.  ( B  \  A ) )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  0 )
18 isumss2.adc . . . . . . . . . 10  |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )
1918adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A. j  e.  B DECID  j  e.  A )
20 eleq1w 2178 . . . . . . . . . . 11  |-  ( j  =  a  ->  (
j  e.  A  <->  a  e.  A ) )
2120dcbid 808 . . . . . . . . . 10  |-  ( j  =  a  ->  (DECID  j  e.  A  <-> DECID  a  e.  A )
)
2221cbvralv 2631 . . . . . . . . 9  |-  ( A. j  e.  B DECID  j  e.  A 
<-> 
A. a  e.  B DECID  a  e.  A )
2319, 22sylib 121 . . . . . . . 8  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A. a  e.  B DECID  a  e.  A )
2423r19.21bi 2497 . . . . . . 7  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  B )  -> DECID  a  e.  A )
2524adantlr 468 . . . . . 6  |-  ( ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M )
)  /\  a  e.  B )  -> DECID  a  e.  A
)
262adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  ->  A  C_  B )
2726ssneld 3069 . . . . . . . . 9  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  -> 
( -.  a  e.  B  ->  -.  a  e.  A ) )
2827imp 123 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M )
)  /\  -.  a  e.  B )  ->  -.  a  e.  A )
2928olcd 708 . . . . . . 7  |-  ( ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M )
)  /\  -.  a  e.  B )  ->  (
a  e.  A  \/  -.  a  e.  A
) )
30 df-dc 805 . . . . . . 7  |-  (DECID  a  e.  A  <->  ( a  e.  A  \/  -.  a  e.  A ) )
3129, 30sylibr 133 . . . . . 6  |-  ( ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M )
)  /\  -.  a  e.  B )  -> DECID  a  e.  A
)
32 eleq1w 2178 . . . . . . . . 9  |-  ( j  =  a  ->  (
j  e.  B  <->  a  e.  B ) )
3332dcbid 808 . . . . . . . 8  |-  ( j  =  a  ->  (DECID  j  e.  B  <-> DECID  a  e.  B )
)
34 simplr3 1010 . . . . . . . 8  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  ->  A. j  e.  ( ZZ>=
`  M )DECID  j  e.  B )
35 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  -> 
a  e.  ( ZZ>= `  M ) )
3633, 34, 35rspcdva 2768 . . . . . . 7  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  -> DECID  a  e.  B )
37 exmiddc 806 . . . . . . 7  |-  (DECID  a  e.  B  ->  ( a  e.  B  \/  -.  a  e.  B )
)
3836, 37syl 14 . . . . . 6  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  -> 
( a  e.  B  \/  -.  a  e.  B
) )
3925, 31, 38mpjaodan 772 . . . . 5  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  -> DECID  a  e.  A )
4039ralrimiva 2482 . . . 4  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A. a  e.  ( ZZ>=
`  M )DECID  a  e.  A )
41 simpr1 972 . . . 4  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  M  e.  ZZ )
42 simpr2 973 . . . 4  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  B  C_  ( ZZ>= `  M
) )
43 simpr3 974 . . . . 5  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A. j  e.  ( ZZ>=
`  M )DECID  j  e.  B )
4433cbvralv 2631 . . . . 5  |-  ( A. j  e.  ( ZZ>= `  M )DECID  j  e.  B  <->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  B )
4543, 44sylib 121 . . . 4  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A. a  e.  ( ZZ>=
`  M )DECID  a  e.  B )
462, 14, 17, 40, 41, 42, 45isumss 11115 . . 3  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  sum_ m  e.  A  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  sum_ m  e.  B  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
471adantr 274 . . . 4  |-  ( (
ph  /\  B  e.  Fin )  ->  A  C_  B )
4813adantlr 468 . . . 4  |-  ( ( ( ph  /\  B  e.  Fin )  /\  m  e.  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )
4916adantl 275 . . . 4  |-  ( ( ( ph  /\  B  e.  Fin )  /\  m  e.  ( B  \  A
) )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  0 )
5018adantr 274 . . . 4  |-  ( (
ph  /\  B  e.  Fin )  ->  A. j  e.  B DECID  j  e.  A
)
51 simpr 109 . . . 4  |-  ( (
ph  /\  B  e.  Fin )  ->  B  e. 
Fin )
5247, 48, 49, 50, 51fisumss 11116 . . 3  |-  ( (
ph  /\  B  e.  Fin )  ->  sum_ m  e.  A  if (
m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  sum_ m  e.  B  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
53 isumss2.b . . 3  |-  ( ph  ->  ( ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B )  \/  B  e.  Fin ) )
5446, 52, 53mpjaodan 772 . 2  |-  ( ph  -> 
sum_ m  e.  A  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  sum_ m  e.  B  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
55 iftrue 3449 . . . 4  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  C )
5655sumeq2i 11088 . . 3  |-  sum_ k  e.  A  if (
k  e.  A ,  C ,  0 )  =  sum_ k  e.  A  C
57 nfcv 2258 . . . 4  |-  F/_ m if ( k  e.  A ,  C ,  0 )
58 nfv 1493 . . . . 5  |-  F/ k  m  e.  A
59 nfcv 2258 . . . . 5  |-  F/_ k
0
6058, 6, 59nfif 3470 . . . 4  |-  F/_ k if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )
61 eleq1w 2178 . . . . 5  |-  ( k  =  m  ->  (
k  e.  A  <->  m  e.  A ) )
6261, 8ifbieq1d 3464 . . . 4  |-  ( k  =  m  ->  if ( k  e.  A ,  C ,  0 )  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
6357, 60, 62cbvsumi 11086 . . 3  |-  sum_ k  e.  A  if (
k  e.  A ,  C ,  0 )  =  sum_ m  e.  A  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )
6456, 63eqtr3i 2140 . 2  |-  sum_ k  e.  A  C  =  sum_ m  e.  A  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )
6557, 60, 62cbvsumi 11086 . 2  |-  sum_ k  e.  B  if (
k  e.  A ,  C ,  0 )  =  sum_ m  e.  B  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )
6654, 64, 653eqtr4g 2175 1  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  if ( k  e.  A ,  C ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 682  DECID wdc 804    /\ w3a 947    = wceq 1316    e. wcel 1465   A.wral 2393   [_csb 2975    \ cdif 3038    C_ wss 3041   ifcif 3444   ` cfv 5093   Fincfn 6602   CCcc 7586   0cc0 7588   ZZcz 9012   ZZ>=cuz 9282   sum_csu 11077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-isom 5102  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-frec 6256  df-1o 6281  df-oadd 6285  df-er 6397  df-en 6603  df-dom 6604  df-fin 6605  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8304  df-ap 8311  df-div 8400  df-inn 8685  df-2 8743  df-3 8744  df-4 8745  df-n0 8936  df-z 9013  df-uz 9283  df-q 9368  df-rp 9398  df-fz 9746  df-fzo 9875  df-seqfrec 10174  df-exp 10248  df-ihash 10477  df-cj 10569  df-re 10570  df-im 10571  df-rsqrt 10725  df-abs 10726  df-clim 11003  df-sumdc 11078
This theorem is referenced by:  fsumsplit  11131  sumsplitdc  11156  isumlessdc  11220
  Copyright terms: Public domain W3C validator