ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumss2 Unicode version

Theorem isumss2 11536
Description: Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set  A and the added zeroes compose the rest of the containing set  B which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
Hypotheses
Ref Expression
isumss2.ss  |-  ( ph  ->  A  C_  B )
isumss2.adc  |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )
isumss2.c  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
isumss2.b  |-  ( ph  ->  ( ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B )  \/  B  e.  Fin ) )
Assertion
Ref Expression
isumss2  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  if ( k  e.  A ,  C ,  0 ) )
Distinct variable groups:    A, j    A, k    B, j    B, k   
j, M
Allowed substitution hints:    ph( j, k)    C( j, k)    M( k)

Proof of Theorem isumss2
Dummy variables  a  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumss2.ss . . . . 5  |-  ( ph  ->  A  C_  B )
21adantr 276 . . . 4  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A  C_  B )
3 isumss2.c . . . . . 6  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
4 iftrue 3562 . . . . . . . 8  |-  ( m  e.  A  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  [_ m  / 
k ]_ C )
54adantl 277 . . . . . . 7  |-  ( ( A. k  e.  A  C  e.  CC  /\  m  e.  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  [_ m  / 
k ]_ C )
6 nfcsb1v 3113 . . . . . . . . . 10  |-  F/_ k [_ m  /  k ]_ C
76nfel1 2347 . . . . . . . . 9  |-  F/ k
[_ m  /  k ]_ C  e.  CC
8 csbeq1a 3089 . . . . . . . . . 10  |-  ( k  =  m  ->  C  =  [_ m  /  k ]_ C )
98eleq1d 2262 . . . . . . . . 9  |-  ( k  =  m  ->  ( C  e.  CC  <->  [_ m  / 
k ]_ C  e.  CC ) )
107, 9rspc 2858 . . . . . . . 8  |-  ( m  e.  A  ->  ( A. k  e.  A  C  e.  CC  ->  [_ m  /  k ]_ C  e.  CC )
)
1110impcom 125 . . . . . . 7  |-  ( ( A. k  e.  A  C  e.  CC  /\  m  e.  A )  ->  [_ m  /  k ]_ C  e.  CC )
125, 11eqeltrd 2270 . . . . . 6  |-  ( ( A. k  e.  A  C  e.  CC  /\  m  e.  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )
133, 12sylan 283 . . . . 5  |-  ( (
ph  /\  m  e.  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )
1413adantlr 477 . . . 4  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  m  e.  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )
15 eldifn 3282 . . . . . 6  |-  ( m  e.  ( B  \  A )  ->  -.  m  e.  A )
1615iffalsed 3567 . . . . 5  |-  ( m  e.  ( B  \  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  0 )
1716adantl 277 . . . 4  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  m  e.  ( B  \  A ) )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  0 )
18 isumss2.adc . . . . . . . . . 10  |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )
1918adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A. j  e.  B DECID  j  e.  A )
20 eleq1w 2254 . . . . . . . . . . 11  |-  ( j  =  a  ->  (
j  e.  A  <->  a  e.  A ) )
2120dcbid 839 . . . . . . . . . 10  |-  ( j  =  a  ->  (DECID  j  e.  A  <-> DECID  a  e.  A )
)
2221cbvralv 2726 . . . . . . . . 9  |-  ( A. j  e.  B DECID  j  e.  A 
<-> 
A. a  e.  B DECID  a  e.  A )
2319, 22sylib 122 . . . . . . . 8  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A. a  e.  B DECID  a  e.  A )
2423r19.21bi 2582 . . . . . . 7  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  B )  -> DECID  a  e.  A )
2524adantlr 477 . . . . . 6  |-  ( ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M )
)  /\  a  e.  B )  -> DECID  a  e.  A
)
262adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  ->  A  C_  B )
2726ssneld 3181 . . . . . . . . 9  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  -> 
( -.  a  e.  B  ->  -.  a  e.  A ) )
2827imp 124 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M )
)  /\  -.  a  e.  B )  ->  -.  a  e.  A )
2928olcd 735 . . . . . . 7  |-  ( ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M )
)  /\  -.  a  e.  B )  ->  (
a  e.  A  \/  -.  a  e.  A
) )
30 df-dc 836 . . . . . . 7  |-  (DECID  a  e.  A  <->  ( a  e.  A  \/  -.  a  e.  A ) )
3129, 30sylibr 134 . . . . . 6  |-  ( ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M )
)  /\  -.  a  e.  B )  -> DECID  a  e.  A
)
32 eleq1w 2254 . . . . . . . . 9  |-  ( j  =  a  ->  (
j  e.  B  <->  a  e.  B ) )
3332dcbid 839 . . . . . . . 8  |-  ( j  =  a  ->  (DECID  j  e.  B  <-> DECID  a  e.  B )
)
34 simplr3 1043 . . . . . . . 8  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  ->  A. j  e.  ( ZZ>=
`  M )DECID  j  e.  B )
35 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  -> 
a  e.  ( ZZ>= `  M ) )
3633, 34, 35rspcdva 2869 . . . . . . 7  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  -> DECID  a  e.  B )
37 exmiddc 837 . . . . . . 7  |-  (DECID  a  e.  B  ->  ( a  e.  B  \/  -.  a  e.  B )
)
3836, 37syl 14 . . . . . 6  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  -> 
( a  e.  B  \/  -.  a  e.  B
) )
3925, 31, 38mpjaodan 799 . . . . 5  |-  ( ( ( ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  /\  a  e.  ( ZZ>= `  M ) )  -> DECID  a  e.  A )
4039ralrimiva 2567 . . . 4  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A. a  e.  ( ZZ>=
`  M )DECID  a  e.  A )
41 simpr1 1005 . . . 4  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  M  e.  ZZ )
42 simpr2 1006 . . . 4  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  B  C_  ( ZZ>= `  M
) )
43 simpr3 1007 . . . . 5  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A. j  e.  ( ZZ>=
`  M )DECID  j  e.  B )
4433cbvralv 2726 . . . . 5  |-  ( A. j  e.  ( ZZ>= `  M )DECID  j  e.  B  <->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  B )
4543, 44sylib 122 . . . 4  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  A. a  e.  ( ZZ>=
`  M )DECID  a  e.  B )
462, 14, 17, 40, 41, 42, 45isumss 11534 . . 3  |-  ( (
ph  /\  ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B ) )  ->  sum_ m  e.  A  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  sum_ m  e.  B  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
471adantr 276 . . . 4  |-  ( (
ph  /\  B  e.  Fin )  ->  A  C_  B )
4813adantlr 477 . . . 4  |-  ( ( ( ph  /\  B  e.  Fin )  /\  m  e.  A )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  e.  CC )
4916adantl 277 . . . 4  |-  ( ( ( ph  /\  B  e.  Fin )  /\  m  e.  ( B  \  A
) )  ->  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  0 )
5018adantr 276 . . . 4  |-  ( (
ph  /\  B  e.  Fin )  ->  A. j  e.  B DECID  j  e.  A
)
51 simpr 110 . . . 4  |-  ( (
ph  /\  B  e.  Fin )  ->  B  e. 
Fin )
5247, 48, 49, 50, 51fisumss 11535 . . 3  |-  ( (
ph  /\  B  e.  Fin )  ->  sum_ m  e.  A  if (
m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  sum_ m  e.  B  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
53 isumss2.b . . 3  |-  ( ph  ->  ( ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B )  \/  B  e.  Fin ) )
5446, 52, 53mpjaodan 799 . 2  |-  ( ph  -> 
sum_ m  e.  A  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )  =  sum_ m  e.  B  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
55 iftrue 3562 . . . 4  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  C )
5655sumeq2i 11507 . . 3  |-  sum_ k  e.  A  if (
k  e.  A ,  C ,  0 )  =  sum_ k  e.  A  C
57 nfcv 2336 . . . 4  |-  F/_ m if ( k  e.  A ,  C ,  0 )
58 nfv 1539 . . . . 5  |-  F/ k  m  e.  A
59 nfcv 2336 . . . . 5  |-  F/_ k
0
6058, 6, 59nfif 3585 . . . 4  |-  F/_ k if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )
61 eleq1w 2254 . . . . 5  |-  ( k  =  m  ->  (
k  e.  A  <->  m  e.  A ) )
6261, 8ifbieq1d 3579 . . . 4  |-  ( k  =  m  ->  if ( k  e.  A ,  C ,  0 )  =  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 ) )
6357, 60, 62cbvsumi 11505 . . 3  |-  sum_ k  e.  A  if (
k  e.  A ,  C ,  0 )  =  sum_ m  e.  A  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )
6456, 63eqtr3i 2216 . 2  |-  sum_ k  e.  A  C  =  sum_ m  e.  A  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )
6557, 60, 62cbvsumi 11505 . 2  |-  sum_ k  e.  B  if (
k  e.  A ,  C ,  0 )  =  sum_ m  e.  B  if ( m  e.  A ,  [_ m  /  k ]_ C ,  0 )
6654, 64, 653eqtr4g 2251 1  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  if ( k  e.  A ,  C ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   [_csb 3080    \ cdif 3150    C_ wss 3153   ifcif 3557   ` cfv 5254   Fincfn 6794   CCcc 7870   0cc0 7872   ZZcz 9317   ZZ>=cuz 9592   sum_csu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  fsumsplit  11550  sumsplitdc  11575  isumlessdc  11639  sumhashdc  12485
  Copyright terms: Public domain W3C validator