ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodssdc Unicode version

Theorem prodssdc 11530
Description: Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon, 6-Aug-2024.)
Hypotheses
Ref Expression
prodss.1  |-  ( ph  ->  A  C_  B )
prodss.2  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
prodssdc.3  |-  ( ph  ->  E. n  e.  (
ZZ>= `  M ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ( ZZ>= `  M
)  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y ) )
prodssdc.a  |-  ( ph  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  A )
prodssdc.m  |-  ( ph  ->  M  e.  ZZ )
prodss.4  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
1 )
prodss.5  |-  ( ph  ->  B  C_  ( ZZ>= `  M ) )
prodssdc.b  |-  ( ph  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B )
Assertion
Ref Expression
prodssdc  |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
Distinct variable groups:    A, j, k, n, y    B, j, k, n, y    C, j, n, y    j, M, k, n, y    ph, j,
k, n, y
Allowed substitution hint:    C( k)

Proof of Theorem prodssdc
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 prodssdc.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 prodssdc.3 . . . 4  |-  ( ph  ->  E. n  e.  (
ZZ>= `  M ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ( ZZ>= `  M
)  |->  if ( k  e.  B ,  C ,  1 ) ) )  ~~>  y ) )
4 prodss.1 . . . . 5  |-  ( ph  ->  A  C_  B )
5 prodss.5 . . . . 5  |-  ( ph  ->  B  C_  ( ZZ>= `  M ) )
64, 5sstrd 3152 . . . 4  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
7 prodssdc.a . . . 4  |-  ( ph  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  A )
8 simpr 109 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  m  e.  ( ZZ>= `  M )
)
9 eleq1w 2227 . . . . . . . . . 10  |-  ( j  =  m  ->  (
j  e.  B  <->  m  e.  B ) )
109dcbid 828 . . . . . . . . 9  |-  ( j  =  m  ->  (DECID  j  e.  B  <-> DECID  m  e.  B )
)
11 prodssdc.b . . . . . . . . . 10  |-  ( ph  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  B )
1211adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )
1310, 12, 8rspcdva 2835 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  -> DECID  m  e.  B
)
14 exmiddc 826 . . . . . . . 8  |-  (DECID  m  e.  B  ->  ( m  e.  B  \/  -.  m  e.  B )
)
1513, 14syl 14 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( m  e.  B  \/  -.  m  e.  B )
)
16 iftrue 3525 . . . . . . . . . . . 12  |-  ( m  e.  B  ->  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 )  =  [_ m  / 
k ]_ C )
1716adantl 275 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  B )  ->  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 )  =  [_ m  / 
k ]_ C )
18 prodss.2 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
1918ex 114 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( k  e.  A  ->  C  e.  CC ) )
2019adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  B )  ->  (
k  e.  A  ->  C  e.  CC )
)
21 eldif 3125 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( B  \  A )  <->  ( k  e.  B  /\  -.  k  e.  A ) )
22 prodss.4 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
1 )
23 ax-1cn 7846 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
2422, 23eqeltrdi 2257 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  e.  CC )
2521, 24sylan2br 286 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  e.  B  /\  -.  k  e.  A ) )  ->  C  e.  CC )
2625expr 373 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  B )  ->  ( -.  k  e.  A  ->  C  e.  CC ) )
27 eleq1w 2227 . . . . . . . . . . . . . . . . 17  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
2827dcbid 828 . . . . . . . . . . . . . . . 16  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
297adantr 274 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  B )  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )
305sselda 3142 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  B )  ->  k  e.  ( ZZ>= `  M )
)
3128, 29, 30rspcdva 2835 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  B )  -> DECID  k  e.  A
)
32 exmiddc 826 . . . . . . . . . . . . . . 15  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
3331, 32syl 14 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  B )  ->  (
k  e.  A  \/  -.  k  e.  A
) )
3420, 26, 33mpjaod 708 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
3534ralrimiva 2539 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  B  C  e.  CC )
36 nfcsb1v 3078 . . . . . . . . . . . . . 14  |-  F/_ k [_ m  /  k ]_ C
3736nfel1 2319 . . . . . . . . . . . . 13  |-  F/ k
[_ m  /  k ]_ C  e.  CC
38 csbeq1a 3054 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  C  =  [_ m  /  k ]_ C )
3938eleq1d 2235 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  ( C  e.  CC  <->  [_ m  / 
k ]_ C  e.  CC ) )
4037, 39rspc 2824 . . . . . . . . . . . 12  |-  ( m  e.  B  ->  ( A. k  e.  B  C  e.  CC  ->  [_ m  /  k ]_ C  e.  CC )
)
4135, 40mpan9 279 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  B )  ->  [_ m  /  k ]_ C  e.  CC )
4217, 41eqeltrd 2243 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  B )  ->  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 )  e.  CC )
4342ex 114 . . . . . . . . 9  |-  ( ph  ->  ( m  e.  B  ->  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 )  e.  CC ) )
44 iffalse 3528 . . . . . . . . . . 11  |-  ( -.  m  e.  B  ->  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 )  =  1 )
4544, 23eqeltrdi 2257 . . . . . . . . . 10  |-  ( -.  m  e.  B  ->  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 )  e.  CC )
4645a1i 9 . . . . . . . . 9  |-  ( ph  ->  ( -.  m  e.  B  ->  if (
m  e.  B ,  [_ m  /  k ]_ C ,  1 )  e.  CC ) )
4743, 46jaod 707 . . . . . . . 8  |-  ( ph  ->  ( ( m  e.  B  \/  -.  m  e.  B )  ->  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 )  e.  CC ) )
4847adantr 274 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  B  \/  -.  m  e.  B
)  ->  if (
m  e.  B ,  [_ m  /  k ]_ C ,  1 )  e.  CC ) )
4915, 48mpd 13 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  if (
m  e.  B ,  [_ m  /  k ]_ C ,  1 )  e.  CC )
50 nfcv 2308 . . . . . . 7  |-  F/_ k
m
51 nfv 1516 . . . . . . . 8  |-  F/ k  m  e.  B
52 nfcv 2308 . . . . . . . 8  |-  F/_ k
1
5351, 36, 52nfif 3548 . . . . . . 7  |-  F/_ k if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 )
54 eleq1w 2227 . . . . . . . 8  |-  ( k  =  m  ->  (
k  e.  B  <->  m  e.  B ) )
5554, 38ifbieq1d 3542 . . . . . . 7  |-  ( k  =  m  ->  if ( k  e.  B ,  C ,  1 )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) )
56 eqid 2165 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  |->  if ( k  e.  B ,  C ,  1 ) )  =  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  B ,  C , 
1 ) )
5750, 53, 55, 56fvmptf 5578 . . . . . 6  |-  ( ( m  e.  ( ZZ>= `  M )  /\  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 )  e.  CC )  -> 
( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  B ,  C , 
1 ) ) `  m )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) )
588, 49, 57syl2anc 409 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  B ,  C ,  1 ) ) `  m )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) )
59 iftrue 3525 . . . . . . . . . . . . . . 15  |-  ( m  e.  A  ->  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  1 )  =  ( ( k  e.  A  |->  C ) `  m
) )
6059adantl 275 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  A )  ->  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  1 )  =  ( ( k  e.  A  |->  C ) `  m
) )
61 simpr 109 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  A )  ->  m  e.  A )
624sselda 3142 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  A )  ->  m  e.  B )
6362, 41syldan 280 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  A )  ->  [_ m  /  k ]_ C  e.  CC )
64 eqid 2165 . . . . . . . . . . . . . . . 16  |-  ( k  e.  A  |->  C )  =  ( k  e.  A  |->  C )
6564fvmpts 5564 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  A  /\  [_ m  /  k ]_ C  e.  CC )  ->  ( ( k  e.  A  |->  C ) `  m )  =  [_ m  /  k ]_ C
)
6661, 63, 65syl2anc 409 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  A )  ->  (
( k  e.  A  |->  C ) `  m
)  =  [_ m  /  k ]_ C
)
6760, 66eqtrd 2198 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  A )  ->  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  1 )  =  [_ m  /  k ]_ C
)
6867ex 114 . . . . . . . . . . . 12  |-  ( ph  ->  ( m  e.  A  ->  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `  m ) ,  1 )  = 
[_ m  /  k ]_ C ) )
6968adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  B )  ->  (
m  e.  A  ->  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  1 )  =  [_ m  /  k ]_ C
) )
70 iffalse 3528 . . . . . . . . . . . . . . 15  |-  ( -.  m  e.  A  ->  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  1 )  =  1 )
7170adantl 275 . . . . . . . . . . . . . 14  |-  ( ( m  e.  B  /\  -.  m  e.  A
)  ->  if (
m  e.  A , 
( ( k  e.  A  |->  C ) `  m ) ,  1 )  =  1 )
7271adantl 275 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  B  /\  -.  m  e.  A ) )  ->  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  1 )  =  1 )
73 eldif 3125 . . . . . . . . . . . . . 14  |-  ( m  e.  ( B  \  A )  <->  ( m  e.  B  /\  -.  m  e.  A ) )
7422ralrimiva 2539 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  ( B  \  A ) C  =  1 )
7536nfeq1 2318 . . . . . . . . . . . . . . . 16  |-  F/ k
[_ m  /  k ]_ C  =  1
7638eqeq1d 2174 . . . . . . . . . . . . . . . 16  |-  ( k  =  m  ->  ( C  =  1  <->  [_ m  / 
k ]_ C  =  1 ) )
7775, 76rspc 2824 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( B  \  A )  ->  ( A. k  e.  ( B  \  A ) C  =  1  ->  [_ m  /  k ]_ C  =  1 ) )
7874, 77mpan9 279 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( B  \  A ) )  ->  [_ m  / 
k ]_ C  =  1 )
7973, 78sylan2br 286 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  B  /\  -.  m  e.  A ) )  ->  [_ m  /  k ]_ C  =  1
)
8072, 79eqtr4d 2201 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  B  /\  -.  m  e.  A ) )  ->  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  1 )  =  [_ m  /  k ]_ C
)
8180expr 373 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  B )  ->  ( -.  m  e.  A  ->  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `  m ) ,  1 )  = 
[_ m  /  k ]_ C ) )
82 eleq1w 2227 . . . . . . . . . . . . . 14  |-  ( j  =  m  ->  (
j  e.  A  <->  m  e.  A ) )
8382dcbid 828 . . . . . . . . . . . . 13  |-  ( j  =  m  ->  (DECID  j  e.  A  <-> DECID  m  e.  A )
)
847adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  B )  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )
855sselda 3142 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  B )  ->  m  e.  ( ZZ>= `  M )
)
8683, 84, 85rspcdva 2835 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  B )  -> DECID  m  e.  A
)
87 exmiddc 826 . . . . . . . . . . . 12  |-  (DECID  m  e.  A  ->  ( m  e.  A  \/  -.  m  e.  A )
)
8886, 87syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  B )  ->  (
m  e.  A  \/  -.  m  e.  A
) )
8969, 81, 88mpjaod 708 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  B )  ->  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  1 )  =  [_ m  /  k ]_ C
)
9089, 17eqtr4d 2201 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  B )  ->  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  1 )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) )
9190ex 114 . . . . . . . 8  |-  ( ph  ->  ( m  e.  B  ->  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `  m ) ,  1 )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) ) )
924ssneld 3144 . . . . . . . . . . . 12  |-  ( ph  ->  ( -.  m  e.  B  ->  -.  m  e.  A ) )
9392imp 123 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  m  e.  B )  ->  -.  m  e.  A )
9493, 70syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  -.  m  e.  B )  ->  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  1 )  =  1 )
9544adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  -.  m  e.  B )  ->  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 )  =  1 )
9694, 95eqtr4d 2201 . . . . . . . . 9  |-  ( (
ph  /\  -.  m  e.  B )  ->  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  1 )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) )
9796ex 114 . . . . . . . 8  |-  ( ph  ->  ( -.  m  e.  B  ->  if (
m  e.  A , 
( ( k  e.  A  |->  C ) `  m ) ,  1 )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) ) )
9891, 97jaod 707 . . . . . . 7  |-  ( ph  ->  ( ( m  e.  B  \/  -.  m  e.  B )  ->  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  1 )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) ) )
9998adantr 274 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  B  \/  -.  m  e.  B
)  ->  if (
m  e.  A , 
( ( k  e.  A  |->  C ) `  m ) ,  1 )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) ) )
10015, 99mpd 13 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  if (
m  e.  A , 
( ( k  e.  A  |->  C ) `  m ) ,  1 )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) )
10158, 100eqtr4d 2201 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  B ,  C ,  1 ) ) `  m )  =  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `  m
) ,  1 ) )
10218fmpttd 5640 . . . . 5  |-  ( ph  ->  ( k  e.  A  |->  C ) : A --> CC )
103102ffvelrnda 5620 . . . 4  |-  ( (
ph  /\  m  e.  A )  ->  (
( k  e.  A  |->  C ) `  m
)  e.  CC )
1041, 2, 3, 6, 7, 101, 103zproddc 11520 . . 3  |-  ( ph  ->  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  (  ~~>  `
 seq M (  x.  ,  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  B ,  C , 
1 ) ) ) ) )
105 simpr 109 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  B )  ->  m  e.  B )
106 eqid 2165 . . . . . . . . . . . 12  |-  ( k  e.  B  |->  C )  =  ( k  e.  B  |->  C )
107106fvmpts 5564 . . . . . . . . . . 11  |-  ( ( m  e.  B  /\  [_ m  /  k ]_ C  e.  CC )  ->  ( ( k  e.  B  |->  C ) `  m )  =  [_ m  /  k ]_ C
)
108105, 41, 107syl2anc 409 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  B )  ->  (
( k  e.  B  |->  C ) `  m
)  =  [_ m  /  k ]_ C
)
109108ifeq1d 3537 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  B )  ->  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `
 m ) ,  1 )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) )
110109ex 114 . . . . . . . 8  |-  ( ph  ->  ( m  e.  B  ->  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `  m ) ,  1 )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) ) )
111 iffalse 3528 . . . . . . . . . 10  |-  ( -.  m  e.  B  ->  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `
 m ) ,  1 )  =  1 )
112111, 44eqtr4d 2201 . . . . . . . . 9  |-  ( -.  m  e.  B  ->  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `
 m ) ,  1 )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) )
113112a1i 9 . . . . . . . 8  |-  ( ph  ->  ( -.  m  e.  B  ->  if (
m  e.  B , 
( ( k  e.  B  |->  C ) `  m ) ,  1 )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) ) )
114110, 113jaod 707 . . . . . . 7  |-  ( ph  ->  ( ( m  e.  B  \/  -.  m  e.  B )  ->  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `
 m ) ,  1 )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) ) )
115114adantr 274 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  B  \/  -.  m  e.  B
)  ->  if (
m  e.  B , 
( ( k  e.  B  |->  C ) `  m ) ,  1 )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) ) )
11615, 115mpd 13 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  if (
m  e.  B , 
( ( k  e.  B  |->  C ) `  m ) ,  1 )  =  if ( m  e.  B ,  [_ m  /  k ]_ C ,  1 ) )
11758, 116eqtr4d 2201 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  B ,  C ,  1 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `  m
) ,  1 ) )
11834fmpttd 5640 . . . . 5  |-  ( ph  ->  ( k  e.  B  |->  C ) : B --> CC )
119118ffvelrnda 5620 . . . 4  |-  ( (
ph  /\  m  e.  B )  ->  (
( k  e.  B  |->  C ) `  m
)  e.  CC )
1201, 2, 3, 5, 11, 117, 119zproddc 11520 . . 3  |-  ( ph  ->  prod_ m  e.  B  ( ( k  e.  B  |->  C ) `  m )  =  (  ~~>  `
 seq M (  x.  ,  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  B ,  C , 
1 ) ) ) ) )
121104, 120eqtr4d 2201 . 2  |-  ( ph  ->  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  prod_ m  e.  B  ( ( k  e.  B  |->  C ) `  m ) )
12218ralrimiva 2539 . . 3  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
123 prodfct 11528 . . 3  |-  ( A. k  e.  A  C  e.  CC  ->  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `
 m )  = 
prod_ k  e.  A  C )
124122, 123syl 14 . 2  |-  ( ph  ->  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  prod_ k  e.  A  C )
125 prodfct 11528 . . 3  |-  ( A. k  e.  B  C  e.  CC  ->  prod_ m  e.  B  ( ( k  e.  B  |->  C ) `
 m )  = 
prod_ k  e.  B  C )
12635, 125syl 14 . 2  |-  ( ph  ->  prod_ m  e.  B  ( ( k  e.  B  |->  C ) `  m )  =  prod_ k  e.  B  C )
127121, 124, 1263eqtr3d 2206 1  |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445   [_csb 3045    \ cdif 3113    C_ wss 3116   ifcif 3520   class class class wbr 3982    |-> cmpt 4043   ` cfv 5188   CCcc 7751   0cc0 7753   1c1 7754    x. cmul 7758   # cap 8479   ZZcz 9191   ZZ>=cuz 9466    seqcseq 10380    ~~> cli 11219   prod_cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by:  fprodssdc  11531
  Copyright terms: Public domain W3C validator