Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssneldd | Unicode version |
Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssneld.1 | |
ssneldd.2 |
Ref | Expression |
---|---|
ssneldd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssneldd.2 | . 2 | |
2 | ssneld.1 | . . 3 | |
3 | 2 | ssneld 3144 | . 2 |
4 | 1, 3 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wcel 2136 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: 0nelrel 4650 addnqprlemfl 7500 addnqprlemfu 7501 mulnqprlemfl 7516 mulnqprlemfu 7517 cauappcvgprlemladdru 7597 fprodntrivap 11525 fprodssdc 11531 |
Copyright terms: Public domain | W3C validator |