| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssneldd | Unicode version | ||
| Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssneld.1 |
|
| ssneldd.2 |
|
| Ref | Expression |
|---|---|
| ssneldd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssneldd.2 |
. 2
| |
| 2 | ssneld.1 |
. . 3
| |
| 3 | 2 | ssneld 3199 |
. 2
|
| 4 | 1, 3 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: 0nelrel 4734 addnqprlemfl 7702 addnqprlemfu 7703 mulnqprlemfl 7718 mulnqprlemfu 7719 cauappcvgprlemladdru 7799 fprodntrivap 11980 fprodssdc 11986 |
| Copyright terms: Public domain | W3C validator |