ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssneldd Unicode version

Theorem ssneldd 3145
Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssneld.1  |-  ( ph  ->  A  C_  B )
ssneldd.2  |-  ( ph  ->  -.  C  e.  B
)
Assertion
Ref Expression
ssneldd  |-  ( ph  ->  -.  C  e.  A
)

Proof of Theorem ssneldd
StepHypRef Expression
1 ssneldd.2 . 2  |-  ( ph  ->  -.  C  e.  B
)
2 ssneld.1 . . 3  |-  ( ph  ->  A  C_  B )
32ssneld 3144 . 2  |-  ( ph  ->  ( -.  C  e.  B  ->  -.  C  e.  A ) )
41, 3mpd 13 1  |-  ( ph  ->  -.  C  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2136    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  0nelrel  4650  addnqprlemfl  7500  addnqprlemfu  7501  mulnqprlemfl  7516  mulnqprlemfu  7517  cauappcvgprlemladdru  7597  fprodntrivap  11525  fprodssdc  11531
  Copyright terms: Public domain W3C validator