ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssneldd Unicode version

Theorem ssneldd 3150
Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssneld.1  |-  ( ph  ->  A  C_  B )
ssneldd.2  |-  ( ph  ->  -.  C  e.  B
)
Assertion
Ref Expression
ssneldd  |-  ( ph  ->  -.  C  e.  A
)

Proof of Theorem ssneldd
StepHypRef Expression
1 ssneldd.2 . 2  |-  ( ph  ->  -.  C  e.  B
)
2 ssneld.1 . . 3  |-  ( ph  ->  A  C_  B )
32ssneld 3149 . 2  |-  ( ph  ->  ( -.  C  e.  B  ->  -.  C  e.  A ) )
41, 3mpd 13 1  |-  ( ph  ->  -.  C  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2141    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134
This theorem is referenced by:  0nelrel  4657  addnqprlemfl  7521  addnqprlemfu  7522  mulnqprlemfl  7537  mulnqprlemfu  7538  cauappcvgprlemladdru  7618  fprodntrivap  11547  fprodssdc  11553
  Copyright terms: Public domain W3C validator