ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssneld GIF version

Theorem ssneld 3144
Description: If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ssneld.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
ssneld (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))

Proof of Theorem ssneld
StepHypRef Expression
1 ssneld.1 . . 3 (𝜑𝐴𝐵)
21sseld 3141 . 2 (𝜑 → (𝐶𝐴𝐶𝐵))
32con3d 621 1 (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2136  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  ssneldd  3145  sumdc  11299  summodclem2a  11322  zsumdc  11325  isumss2  11334  zproddc  11520  prodssdc  11530  decidin  13678
  Copyright terms: Public domain W3C validator