| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulnqprlemfu | Unicode version | ||
| Description: Lemma for mulnqpr 7697. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.) |
| Ref | Expression |
|---|---|
| mulnqprlemfu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulnqprlemrl 7693 |
. . . . . 6
| |
| 2 | ltsonq 7518 |
. . . . . . . . 9
| |
| 3 | mulclnq 7496 |
. . . . . . . . 9
| |
| 4 | sonr 4368 |
. . . . . . . . 9
| |
| 5 | 2, 3, 4 | sylancr 414 |
. . . . . . . 8
|
| 6 | ltrelnq 7485 |
. . . . . . . . . . . 12
| |
| 7 | 6 | brel 4731 |
. . . . . . . . . . 11
|
| 8 | 7 | simpld 112 |
. . . . . . . . . 10
|
| 9 | elex 2784 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . 9
|
| 11 | breq1 4050 |
. . . . . . . . 9
| |
| 12 | 10, 11 | elab3 2926 |
. . . . . . . 8
|
| 13 | 5, 12 | sylnibr 679 |
. . . . . . 7
|
| 14 | ltnqex 7669 |
. . . . . . . . 9
| |
| 15 | gtnqex 7670 |
. . . . . . . . 9
| |
| 16 | 14, 15 | op1st 6239 |
. . . . . . . 8
|
| 17 | 16 | eleq2i 2273 |
. . . . . . 7
|
| 18 | 13, 17 | sylnibr 679 |
. . . . . 6
|
| 19 | 1, 18 | ssneldd 3197 |
. . . . 5
|
| 20 | 19 | adantr 276 |
. . . 4
|
| 21 | nqprlu 7667 |
. . . . . . . 8
| |
| 22 | nqprlu 7667 |
. . . . . . . 8
| |
| 23 | mulclpr 7692 |
. . . . . . . 8
| |
| 24 | 21, 22, 23 | syl2an 289 |
. . . . . . 7
|
| 25 | prop 7595 |
. . . . . . 7
| |
| 26 | 24, 25 | syl 14 |
. . . . . 6
|
| 27 | vex 2776 |
. . . . . . . 8
| |
| 28 | breq2 4051 |
. . . . . . . 8
| |
| 29 | 14, 15 | op2nd 6240 |
. . . . . . . 8
|
| 30 | 27, 28, 29 | elab2 2922 |
. . . . . . 7
|
| 31 | 30 | biimpi 120 |
. . . . . 6
|
| 32 | prloc 7611 |
. . . . . 6
| |
| 33 | 26, 31, 32 | syl2an 289 |
. . . . 5
|
| 34 | 33 | orcomd 731 |
. . . 4
|
| 35 | 20, 34 | ecased 1362 |
. . 3
|
| 36 | 35 | ex 115 |
. 2
|
| 37 | 36 | ssrdv 3200 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-eprel 4340 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-1o 6509 df-2o 6510 df-oadd 6513 df-omul 6514 df-er 6627 df-ec 6629 df-qs 6633 df-ni 7424 df-pli 7425 df-mi 7426 df-lti 7427 df-plpq 7464 df-mpq 7465 df-enq 7467 df-nqqs 7468 df-plqqs 7469 df-mqqs 7470 df-1nqqs 7471 df-rq 7472 df-ltnqqs 7473 df-enq0 7544 df-nq0 7545 df-0nq0 7546 df-plq0 7547 df-mq0 7548 df-inp 7586 df-imp 7589 |
| This theorem is referenced by: mulnqpr 7697 |
| Copyright terms: Public domain | W3C validator |