| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulnqprlemfu | Unicode version | ||
| Description: Lemma for mulnqpr 7732. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.) |
| Ref | Expression |
|---|---|
| mulnqprlemfu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulnqprlemrl 7728 |
. . . . . 6
| |
| 2 | ltsonq 7553 |
. . . . . . . . 9
| |
| 3 | mulclnq 7531 |
. . . . . . . . 9
| |
| 4 | sonr 4385 |
. . . . . . . . 9
| |
| 5 | 2, 3, 4 | sylancr 414 |
. . . . . . . 8
|
| 6 | ltrelnq 7520 |
. . . . . . . . . . . 12
| |
| 7 | 6 | brel 4748 |
. . . . . . . . . . 11
|
| 8 | 7 | simpld 112 |
. . . . . . . . . 10
|
| 9 | elex 2791 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . 9
|
| 11 | breq1 4065 |
. . . . . . . . 9
| |
| 12 | 10, 11 | elab3 2935 |
. . . . . . . 8
|
| 13 | 5, 12 | sylnibr 681 |
. . . . . . 7
|
| 14 | ltnqex 7704 |
. . . . . . . . 9
| |
| 15 | gtnqex 7705 |
. . . . . . . . 9
| |
| 16 | 14, 15 | op1st 6262 |
. . . . . . . 8
|
| 17 | 16 | eleq2i 2276 |
. . . . . . 7
|
| 18 | 13, 17 | sylnibr 681 |
. . . . . 6
|
| 19 | 1, 18 | ssneldd 3207 |
. . . . 5
|
| 20 | 19 | adantr 276 |
. . . 4
|
| 21 | nqprlu 7702 |
. . . . . . . 8
| |
| 22 | nqprlu 7702 |
. . . . . . . 8
| |
| 23 | mulclpr 7727 |
. . . . . . . 8
| |
| 24 | 21, 22, 23 | syl2an 289 |
. . . . . . 7
|
| 25 | prop 7630 |
. . . . . . 7
| |
| 26 | 24, 25 | syl 14 |
. . . . . 6
|
| 27 | vex 2782 |
. . . . . . . 8
| |
| 28 | breq2 4066 |
. . . . . . . 8
| |
| 29 | 14, 15 | op2nd 6263 |
. . . . . . . 8
|
| 30 | 27, 28, 29 | elab2 2931 |
. . . . . . 7
|
| 31 | 30 | biimpi 120 |
. . . . . 6
|
| 32 | prloc 7646 |
. . . . . 6
| |
| 33 | 26, 31, 32 | syl2an 289 |
. . . . 5
|
| 34 | 33 | orcomd 733 |
. . . 4
|
| 35 | 20, 34 | ecased 1364 |
. . 3
|
| 36 | 35 | ex 115 |
. 2
|
| 37 | 36 | ssrdv 3210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-eprel 4357 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-1o 6532 df-2o 6533 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-pli 7460 df-mi 7461 df-lti 7462 df-plpq 7499 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-plqqs 7504 df-mqqs 7505 df-1nqqs 7506 df-rq 7507 df-ltnqqs 7508 df-enq0 7579 df-nq0 7580 df-0nq0 7581 df-plq0 7582 df-mq0 7583 df-inp 7621 df-imp 7624 |
| This theorem is referenced by: mulnqpr 7732 |
| Copyright terms: Public domain | W3C validator |