Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0nelrel | Unicode version |
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.) |
Ref | Expression |
---|---|
0nelrel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 4586 | . . . 4 | |
2 | 1 | biimpi 119 | . . 3 |
3 | 0nelxp 4607 | . . . 4 | |
4 | 3 | a1i 9 | . . 3 |
5 | 2, 4 | ssneldd 3127 | . 2 |
6 | df-nel 2420 | . 2 | |
7 | 5, 6 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wcel 2125 wnel 2419 cvv 2709 wss 3098 c0 3390 cxp 4577 wrel 4584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-opab 4022 df-xp 4585 df-rel 4586 |
This theorem is referenced by: 0nelfun 5181 |
Copyright terms: Public domain | W3C validator |