ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelrel Unicode version

Theorem 0nelrel 4701
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.)
Assertion
Ref Expression
0nelrel  |-  ( Rel 
R  ->  (/)  e/  R
)

Proof of Theorem 0nelrel
StepHypRef Expression
1 df-rel 4662 . . . 4  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
21biimpi 120 . . 3  |-  ( Rel 
R  ->  R  C_  ( _V  X.  _V ) )
3 0nelxp 4683 . . . 4  |-  -.  (/)  e.  ( _V  X.  _V )
43a1i 9 . . 3  |-  ( Rel 
R  ->  -.  (/)  e.  ( _V  X.  _V )
)
52, 4ssneldd 3182 . 2  |-  ( Rel 
R  ->  -.  (/)  e.  R
)
6 df-nel 2460 . 2  |-  ( (/)  e/  R  <->  -.  (/)  e.  R
)
75, 6sylibr 134 1  |-  ( Rel 
R  ->  (/)  e/  R
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2164    e/ wnel 2459   _Vcvv 2760    C_ wss 3153   (/)c0 3446    X. cxp 4653   Rel wrel 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4661  df-rel 4662
This theorem is referenced by:  0nelfun  5264
  Copyright terms: Public domain W3C validator