ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelrel Unicode version

Theorem 0nelrel 4625
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.)
Assertion
Ref Expression
0nelrel  |-  ( Rel 
R  ->  (/)  e/  R
)

Proof of Theorem 0nelrel
StepHypRef Expression
1 df-rel 4586 . . . 4  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
21biimpi 119 . . 3  |-  ( Rel 
R  ->  R  C_  ( _V  X.  _V ) )
3 0nelxp 4607 . . . 4  |-  -.  (/)  e.  ( _V  X.  _V )
43a1i 9 . . 3  |-  ( Rel 
R  ->  -.  (/)  e.  ( _V  X.  _V )
)
52, 4ssneldd 3127 . 2  |-  ( Rel 
R  ->  -.  (/)  e.  R
)
6 df-nel 2420 . 2  |-  ( (/)  e/  R  <->  -.  (/)  e.  R
)
75, 6sylibr 133 1  |-  ( Rel 
R  ->  (/)  e/  R
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2125    e/ wnel 2419   _Vcvv 2709    C_ wss 3098   (/)c0 3390    X. cxp 4577   Rel wrel 4584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-v 2711  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-opab 4022  df-xp 4585  df-rel 4586
This theorem is referenced by:  0nelfun  5181
  Copyright terms: Public domain W3C validator