ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprlemfu Unicode version

Theorem addnqprlemfu 7474
Description: Lemma for addnqpr 7475. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
Assertion
Ref Expression
addnqprlemfu  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  C_  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
Distinct variable groups:    A, l, u    B, l, u

Proof of Theorem addnqprlemfu
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 addnqprlemrl 7471 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  C_  ( 1st ` 
<. { l  |  l 
<Q  ( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. ) )
2 ltsonq 7312 . . . . . . . . 9  |-  <Q  Or  Q.
3 addclnq 7289 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  e.  Q. )
4 sonr 4277 . . . . . . . . 9  |-  ( ( 
<Q  Or  Q.  /\  ( A  +Q  B )  e. 
Q. )  ->  -.  ( A  +Q  B
)  <Q  ( A  +Q  B ) )
52, 3, 4sylancr 411 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  +Q  B )  <Q  ( A  +Q  B ) )
6 ltrelnq 7279 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
76brel 4637 . . . . . . . . . . 11  |-  ( ( A  +Q  B ) 
<Q  ( A  +Q  B
)  ->  ( ( A  +Q  B )  e. 
Q.  /\  ( A  +Q  B )  e.  Q. ) )
87simpld 111 . . . . . . . . . 10  |-  ( ( A  +Q  B ) 
<Q  ( A  +Q  B
)  ->  ( A  +Q  B )  e.  Q. )
9 elex 2723 . . . . . . . . . 10  |-  ( ( A  +Q  B )  e.  Q.  ->  ( A  +Q  B )  e. 
_V )
108, 9syl 14 . . . . . . . . 9  |-  ( ( A  +Q  B ) 
<Q  ( A  +Q  B
)  ->  ( A  +Q  B )  e.  _V )
11 breq1 3968 . . . . . . . . 9  |-  ( l  =  ( A  +Q  B )  ->  (
l  <Q  ( A  +Q  B )  <->  ( A  +Q  B )  <Q  ( A  +Q  B ) ) )
1210, 11elab3 2864 . . . . . . . 8  |-  ( ( A  +Q  B )  e.  { l  |  l  <Q  ( A  +Q  B ) }  <->  ( A  +Q  B )  <Q  ( A  +Q  B ) )
135, 12sylnibr 667 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  +Q  B )  e.  {
l  |  l  <Q 
( A  +Q  B
) } )
14 ltnqex 7463 . . . . . . . . 9  |-  { l  |  l  <Q  ( A  +Q  B ) }  e.  _V
15 gtnqex 7464 . . . . . . . . 9  |-  { u  |  ( A  +Q  B )  <Q  u }  e.  _V
1614, 15op1st 6091 . . . . . . . 8  |-  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. )  =  {
l  |  l  <Q 
( A  +Q  B
) }
1716eleq2i 2224 . . . . . . 7  |-  ( ( A  +Q  B )  e.  ( 1st `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  <->  ( A  +Q  B )  e.  {
l  |  l  <Q 
( A  +Q  B
) } )
1813, 17sylnibr 667 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  +Q  B )  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B
)  <Q  u } >. ) )
191, 18ssneldd 3131 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  +Q  B )  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )
2019adantr 274 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )  ->  -.  ( A  +Q  B
)  e.  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
21 nqprlu 7461 . . . . . . . 8  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
22 nqprlu 7461 . . . . . . . 8  |-  ( B  e.  Q.  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
23 addclpr 7451 . . . . . . . 8  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  B } ,  {
u  |  B  <Q  u } >.  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  e.  P. )
2421, 22, 23syl2an 287 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  e.  P. )
25 prop 7389 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  e.  P.  ->  <. ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) ,  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) >.  e.  P. )
2624, 25syl 14 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> 
<. ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ,  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) >.  e.  P. )
27 vex 2715 . . . . . . . 8  |-  r  e. 
_V
28 breq2 3969 . . . . . . . 8  |-  ( u  =  r  ->  (
( A  +Q  B
)  <Q  u  <->  ( A  +Q  B )  <Q  r
) )
2914, 15op2nd 6092 . . . . . . . 8  |-  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. )  =  {
u  |  ( A  +Q  B )  <Q  u }
3027, 28, 29elab2 2860 . . . . . . 7  |-  ( r  e.  ( 2nd `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  <->  ( A  +Q  B )  <Q  r
)
3130biimpi 119 . . . . . 6  |-  ( r  e.  ( 2nd `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  ->  ( A  +Q  B )  <Q 
r )
32 prloc 7405 . . . . . 6  |-  ( (
<. ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ,  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) >.  e.  P.  /\  ( A  +Q  B
)  <Q  r )  -> 
( ( A  +Q  B )  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  \/  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3326, 31, 32syl2an 287 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )  -> 
( ( A  +Q  B )  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  \/  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3433orcomd 719 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )  -> 
( r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  \/  ( A  +Q  B )  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3520, 34ecased 1331 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )  -> 
r  e.  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
3635ex 114 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B
)  <Q  u } >. )  ->  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3736ssrdv 3134 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  C_  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    e. wcel 2128   {cab 2143   _Vcvv 2712    C_ wss 3102   <.cop 3563   class class class wbr 3965    Or wor 4255   ` cfv 5169  (class class class)co 5821   1stc1st 6083   2ndc2nd 6084   Q.cnq 7194    +Q cplq 7196    <Q cltq 7199   P.cnp 7205    +P. cpp 7207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4249  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-1o 6360  df-2o 6361  df-oadd 6364  df-omul 6365  df-er 6477  df-ec 6479  df-qs 6483  df-ni 7218  df-pli 7219  df-mi 7220  df-lti 7221  df-plpq 7258  df-mpq 7259  df-enq 7261  df-nqqs 7262  df-plqqs 7263  df-mqqs 7264  df-1nqqs 7265  df-rq 7266  df-ltnqqs 7267  df-enq0 7338  df-nq0 7339  df-0nq0 7340  df-plq0 7341  df-mq0 7342  df-inp 7380  df-iplp 7382
This theorem is referenced by:  addnqpr  7475
  Copyright terms: Public domain W3C validator