ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqprlemfl Unicode version

Theorem mulnqprlemfl 7383
Description: Lemma for mulnqpr 7385. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
Assertion
Ref Expression
mulnqprlemfl  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  <. { l  |  l  <Q 
( A  .Q  B
) } ,  {
u  |  ( A  .Q  B )  <Q  u } >. )  C_  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
Distinct variable groups:    A, l, u    B, l, u

Proof of Theorem mulnqprlemfl
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 mulnqprlemru 7382 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  |  l 
<Q  ( A  .Q  B
) } ,  {
u  |  ( A  .Q  B )  <Q  u } >. ) )
2 ltsonq 7206 . . . . . . . . 9  |-  <Q  Or  Q.
3 mulclnq 7184 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  e.  Q. )
4 sonr 4239 . . . . . . . . 9  |-  ( ( 
<Q  Or  Q.  /\  ( A  .Q  B )  e. 
Q. )  ->  -.  ( A  .Q  B
)  <Q  ( A  .Q  B ) )
52, 3, 4sylancr 410 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  .Q  B )  <Q  ( A  .Q  B ) )
6 ltrelnq 7173 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
76brel 4591 . . . . . . . . . . 11  |-  ( ( A  .Q  B ) 
<Q  ( A  .Q  B
)  ->  ( ( A  .Q  B )  e. 
Q.  /\  ( A  .Q  B )  e.  Q. ) )
87simpld 111 . . . . . . . . . 10  |-  ( ( A  .Q  B ) 
<Q  ( A  .Q  B
)  ->  ( A  .Q  B )  e.  Q. )
9 elex 2697 . . . . . . . . . 10  |-  ( ( A  .Q  B )  e.  Q.  ->  ( A  .Q  B )  e. 
_V )
108, 9syl 14 . . . . . . . . 9  |-  ( ( A  .Q  B ) 
<Q  ( A  .Q  B
)  ->  ( A  .Q  B )  e.  _V )
11 breq2 3933 . . . . . . . . 9  |-  ( u  =  ( A  .Q  B )  ->  (
( A  .Q  B
)  <Q  u  <->  ( A  .Q  B )  <Q  ( A  .Q  B ) ) )
1210, 11elab3 2836 . . . . . . . 8  |-  ( ( A  .Q  B )  e.  { u  |  ( A  .Q  B
)  <Q  u }  <->  ( A  .Q  B )  <Q  ( A  .Q  B ) )
135, 12sylnibr 666 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  .Q  B )  e.  {
u  |  ( A  .Q  B )  <Q  u } )
14 ltnqex 7357 . . . . . . . . 9  |-  { l  |  l  <Q  ( A  .Q  B ) }  e.  _V
15 gtnqex 7358 . . . . . . . . 9  |-  { u  |  ( A  .Q  B )  <Q  u }  e.  _V
1614, 15op2nd 6045 . . . . . . . 8  |-  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >. )  =  {
u  |  ( A  .Q  B )  <Q  u }
1716eleq2i 2206 . . . . . . 7  |-  ( ( A  .Q  B )  e.  ( 2nd `  <. { l  |  l  <Q 
( A  .Q  B
) } ,  {
u  |  ( A  .Q  B )  <Q  u } >. )  <->  ( A  .Q  B )  e.  {
u  |  ( A  .Q  B )  <Q  u } )
1813, 17sylnibr 666 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  .Q  B )  e.  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B
)  <Q  u } >. ) )
191, 18ssneldd 3100 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  .Q  B )  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )
2019adantr 274 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >. ) )  ->  -.  ( A  .Q  B
)  e.  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
21 nqprlu 7355 . . . . . . 7  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
22 nqprlu 7355 . . . . . . 7  |-  ( B  e.  Q.  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
23 mulclpr 7380 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  B } ,  {
u  |  B  <Q  u } >.  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  e.  P. )
2421, 22, 23syl2an 287 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  e.  P. )
25 prop 7283 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  e.  P.  ->  <. ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) ,  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) >.  e.  P. )
2624, 25syl 14 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> 
<. ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ,  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) >.  e.  P. )
27 vex 2689 . . . . . . 7  |-  r  e. 
_V
28 breq1 3932 . . . . . . 7  |-  ( l  =  r  ->  (
l  <Q  ( A  .Q  B )  <->  r  <Q  ( A  .Q  B ) ) )
2914, 15op1st 6044 . . . . . . 7  |-  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >. )  =  {
l  |  l  <Q 
( A  .Q  B
) }
3027, 28, 29elab2 2832 . . . . . 6  |-  ( r  e.  ( 1st `  <. { l  |  l  <Q 
( A  .Q  B
) } ,  {
u  |  ( A  .Q  B )  <Q  u } >. )  <->  r  <Q  ( A  .Q  B ) )
3130biimpi 119 . . . . 5  |-  ( r  e.  ( 1st `  <. { l  |  l  <Q 
( A  .Q  B
) } ,  {
u  |  ( A  .Q  B )  <Q  u } >. )  ->  r  <Q  ( A  .Q  B
) )
32 prloc 7299 . . . . 5  |-  ( (
<. ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ,  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) >.  e.  P.  /\  r  <Q  ( A  .Q  B ) )  -> 
( r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  \/  ( A  .Q  B )  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3326, 31, 32syl2an 287 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >. ) )  -> 
( r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  \/  ( A  .Q  B )  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3420, 33ecased 1327 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >. ) )  -> 
r  e.  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
3534ex 114 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( r  e.  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B
)  <Q  u } >. )  ->  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3635ssrdv 3103 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  <. { l  |  l  <Q 
( A  .Q  B
) } ,  {
u  |  ( A  .Q  B )  <Q  u } >. )  C_  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 697    e. wcel 1480   {cab 2125   _Vcvv 2686    C_ wss 3071   <.cop 3530   class class class wbr 3929    Or wor 4217   ` cfv 5123  (class class class)co 5774   1stc1st 6036   2ndc2nd 6037   Q.cnq 7088    .Q cmq 7091    <Q cltq 7093   P.cnp 7099    .P. cmp 7102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-imp 7277
This theorem is referenced by:  mulnqpr  7385
  Copyright terms: Public domain W3C validator