ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqprlemfl Unicode version

Theorem mulnqprlemfl 7331
Description: Lemma for mulnqpr 7333. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
Assertion
Ref Expression
mulnqprlemfl  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  <. { l  |  l  <Q 
( A  .Q  B
) } ,  {
u  |  ( A  .Q  B )  <Q  u } >. )  C_  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
Distinct variable groups:    A, l, u    B, l, u

Proof of Theorem mulnqprlemfl
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 mulnqprlemru 7330 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  |  l 
<Q  ( A  .Q  B
) } ,  {
u  |  ( A  .Q  B )  <Q  u } >. ) )
2 ltsonq 7154 . . . . . . . . 9  |-  <Q  Or  Q.
3 mulclnq 7132 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  e.  Q. )
4 sonr 4199 . . . . . . . . 9  |-  ( ( 
<Q  Or  Q.  /\  ( A  .Q  B )  e. 
Q. )  ->  -.  ( A  .Q  B
)  <Q  ( A  .Q  B ) )
52, 3, 4sylancr 408 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  .Q  B )  <Q  ( A  .Q  B ) )
6 ltrelnq 7121 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
76brel 4551 . . . . . . . . . . 11  |-  ( ( A  .Q  B ) 
<Q  ( A  .Q  B
)  ->  ( ( A  .Q  B )  e. 
Q.  /\  ( A  .Q  B )  e.  Q. ) )
87simpld 111 . . . . . . . . . 10  |-  ( ( A  .Q  B ) 
<Q  ( A  .Q  B
)  ->  ( A  .Q  B )  e.  Q. )
9 elex 2668 . . . . . . . . . 10  |-  ( ( A  .Q  B )  e.  Q.  ->  ( A  .Q  B )  e. 
_V )
108, 9syl 14 . . . . . . . . 9  |-  ( ( A  .Q  B ) 
<Q  ( A  .Q  B
)  ->  ( A  .Q  B )  e.  _V )
11 breq2 3899 . . . . . . . . 9  |-  ( u  =  ( A  .Q  B )  ->  (
( A  .Q  B
)  <Q  u  <->  ( A  .Q  B )  <Q  ( A  .Q  B ) ) )
1210, 11elab3 2805 . . . . . . . 8  |-  ( ( A  .Q  B )  e.  { u  |  ( A  .Q  B
)  <Q  u }  <->  ( A  .Q  B )  <Q  ( A  .Q  B ) )
135, 12sylnibr 649 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  .Q  B )  e.  {
u  |  ( A  .Q  B )  <Q  u } )
14 ltnqex 7305 . . . . . . . . 9  |-  { l  |  l  <Q  ( A  .Q  B ) }  e.  _V
15 gtnqex 7306 . . . . . . . . 9  |-  { u  |  ( A  .Q  B )  <Q  u }  e.  _V
1614, 15op2nd 5999 . . . . . . . 8  |-  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >. )  =  {
u  |  ( A  .Q  B )  <Q  u }
1716eleq2i 2181 . . . . . . 7  |-  ( ( A  .Q  B )  e.  ( 2nd `  <. { l  |  l  <Q 
( A  .Q  B
) } ,  {
u  |  ( A  .Q  B )  <Q  u } >. )  <->  ( A  .Q  B )  e.  {
u  |  ( A  .Q  B )  <Q  u } )
1813, 17sylnibr 649 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  .Q  B )  e.  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B
)  <Q  u } >. ) )
191, 18ssneldd 3066 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  .Q  B )  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )
2019adantr 272 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >. ) )  ->  -.  ( A  .Q  B
)  e.  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
21 nqprlu 7303 . . . . . . 7  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
22 nqprlu 7303 . . . . . . 7  |-  ( B  e.  Q.  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
23 mulclpr 7328 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  B } ,  {
u  |  B  <Q  u } >.  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  e.  P. )
2421, 22, 23syl2an 285 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  e.  P. )
25 prop 7231 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  e.  P.  ->  <. ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) ,  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) >.  e.  P. )
2624, 25syl 14 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> 
<. ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ,  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) >.  e.  P. )
27 vex 2660 . . . . . . 7  |-  r  e. 
_V
28 breq1 3898 . . . . . . 7  |-  ( l  =  r  ->  (
l  <Q  ( A  .Q  B )  <->  r  <Q  ( A  .Q  B ) ) )
2914, 15op1st 5998 . . . . . . 7  |-  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >. )  =  {
l  |  l  <Q 
( A  .Q  B
) }
3027, 28, 29elab2 2801 . . . . . 6  |-  ( r  e.  ( 1st `  <. { l  |  l  <Q 
( A  .Q  B
) } ,  {
u  |  ( A  .Q  B )  <Q  u } >. )  <->  r  <Q  ( A  .Q  B ) )
3130biimpi 119 . . . . 5  |-  ( r  e.  ( 1st `  <. { l  |  l  <Q 
( A  .Q  B
) } ,  {
u  |  ( A  .Q  B )  <Q  u } >. )  ->  r  <Q  ( A  .Q  B
) )
32 prloc 7247 . . . . 5  |-  ( (
<. ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ,  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) >.  e.  P.  /\  r  <Q  ( A  .Q  B ) )  -> 
( r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  \/  ( A  .Q  B )  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3326, 31, 32syl2an 285 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >. ) )  -> 
( r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  \/  ( A  .Q  B )  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3420, 33ecased 1310 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >. ) )  -> 
r  e.  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
3534ex 114 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( r  e.  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B
)  <Q  u } >. )  ->  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3635ssrdv 3069 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  <. { l  |  l  <Q 
( A  .Q  B
) } ,  {
u  |  ( A  .Q  B )  <Q  u } >. )  C_  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 680    e. wcel 1463   {cab 2101   _Vcvv 2657    C_ wss 3037   <.cop 3496   class class class wbr 3895    Or wor 4177   ` cfv 5081  (class class class)co 5728   1stc1st 5990   2ndc2nd 5991   Q.cnq 7036    .Q cmq 7039    <Q cltq 7041   P.cnp 7047    .P. cmp 7050
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-eprel 4171  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-1o 6267  df-2o 6268  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7060  df-pli 7061  df-mi 7062  df-lti 7063  df-plpq 7100  df-mpq 7101  df-enq 7103  df-nqqs 7104  df-plqqs 7105  df-mqqs 7106  df-1nqqs 7107  df-rq 7108  df-ltnqqs 7109  df-enq0 7180  df-nq0 7181  df-0nq0 7182  df-plq0 7183  df-mq0 7184  df-inp 7222  df-imp 7225
This theorem is referenced by:  mulnqpr  7333
  Copyright terms: Public domain W3C validator