| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulnqprlemfl | Unicode version | ||
| Description: Lemma for mulnqpr 7705. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.) |
| Ref | Expression |
|---|---|
| mulnqprlemfl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulnqprlemru 7702 |
. . . . . 6
| |
| 2 | ltsonq 7526 |
. . . . . . . . 9
| |
| 3 | mulclnq 7504 |
. . . . . . . . 9
| |
| 4 | sonr 4371 |
. . . . . . . . 9
| |
| 5 | 2, 3, 4 | sylancr 414 |
. . . . . . . 8
|
| 6 | ltrelnq 7493 |
. . . . . . . . . . . 12
| |
| 7 | 6 | brel 4734 |
. . . . . . . . . . 11
|
| 8 | 7 | simpld 112 |
. . . . . . . . . 10
|
| 9 | elex 2785 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . 9
|
| 11 | breq2 4054 |
. . . . . . . . 9
| |
| 12 | 10, 11 | elab3 2929 |
. . . . . . . 8
|
| 13 | 5, 12 | sylnibr 679 |
. . . . . . 7
|
| 14 | ltnqex 7677 |
. . . . . . . . 9
| |
| 15 | gtnqex 7678 |
. . . . . . . . 9
| |
| 16 | 14, 15 | op2nd 6245 |
. . . . . . . 8
|
| 17 | 16 | eleq2i 2273 |
. . . . . . 7
|
| 18 | 13, 17 | sylnibr 679 |
. . . . . 6
|
| 19 | 1, 18 | ssneldd 3200 |
. . . . 5
|
| 20 | 19 | adantr 276 |
. . . 4
|
| 21 | nqprlu 7675 |
. . . . . . 7
| |
| 22 | nqprlu 7675 |
. . . . . . 7
| |
| 23 | mulclpr 7700 |
. . . . . . 7
| |
| 24 | 21, 22, 23 | syl2an 289 |
. . . . . 6
|
| 25 | prop 7603 |
. . . . . 6
| |
| 26 | 24, 25 | syl 14 |
. . . . 5
|
| 27 | vex 2776 |
. . . . . . 7
| |
| 28 | breq1 4053 |
. . . . . . 7
| |
| 29 | 14, 15 | op1st 6244 |
. . . . . . 7
|
| 30 | 27, 28, 29 | elab2 2925 |
. . . . . 6
|
| 31 | 30 | biimpi 120 |
. . . . 5
|
| 32 | prloc 7619 |
. . . . 5
| |
| 33 | 26, 31, 32 | syl2an 289 |
. . . 4
|
| 34 | 20, 33 | ecased 1362 |
. . 3
|
| 35 | 34 | ex 115 |
. 2
|
| 36 | 35 | ssrdv 3203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-eprel 4343 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-1o 6514 df-2o 6515 df-oadd 6518 df-omul 6519 df-er 6632 df-ec 6634 df-qs 6638 df-ni 7432 df-pli 7433 df-mi 7434 df-lti 7435 df-plpq 7472 df-mpq 7473 df-enq 7475 df-nqqs 7476 df-plqqs 7477 df-mqqs 7478 df-1nqqs 7479 df-rq 7480 df-ltnqqs 7481 df-enq0 7552 df-nq0 7553 df-0nq0 7554 df-plq0 7555 df-mq0 7556 df-inp 7594 df-imp 7597 |
| This theorem is referenced by: mulnqpr 7705 |
| Copyright terms: Public domain | W3C validator |