ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssneldd GIF version

Theorem ssneldd 3186
Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssneld.1 (𝜑𝐴𝐵)
ssneldd.2 (𝜑 → ¬ 𝐶𝐵)
Assertion
Ref Expression
ssneldd (𝜑 → ¬ 𝐶𝐴)

Proof of Theorem ssneldd
StepHypRef Expression
1 ssneldd.2 . 2 (𝜑 → ¬ 𝐶𝐵)
2 ssneld.1 . . 3 (𝜑𝐴𝐵)
32ssneld 3185 . 2 (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))
41, 3mpd 13 1 (𝜑 → ¬ 𝐶𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2167  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  0nelrel  4709  addnqprlemfl  7626  addnqprlemfu  7627  mulnqprlemfl  7642  mulnqprlemfu  7643  cauappcvgprlemladdru  7723  fprodntrivap  11749  fprodssdc  11755
  Copyright terms: Public domain W3C validator