ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprlemfl Unicode version

Theorem addnqprlemfl 7521
Description: Lemma for addnqpr 7523. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
Assertion
Ref Expression
addnqprlemfl  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  C_  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
Distinct variable groups:    A, l, u    B, l, u

Proof of Theorem addnqprlemfl
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 addnqprlemru 7520 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  |  l 
<Q  ( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. ) )
2 ltsonq 7360 . . . . . . . . 9  |-  <Q  Or  Q.
3 addclnq 7337 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  e.  Q. )
4 sonr 4302 . . . . . . . . 9  |-  ( ( 
<Q  Or  Q.  /\  ( A  +Q  B )  e. 
Q. )  ->  -.  ( A  +Q  B
)  <Q  ( A  +Q  B ) )
52, 3, 4sylancr 412 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  +Q  B )  <Q  ( A  +Q  B ) )
6 ltrelnq 7327 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
76brel 4663 . . . . . . . . . . 11  |-  ( ( A  +Q  B ) 
<Q  ( A  +Q  B
)  ->  ( ( A  +Q  B )  e. 
Q.  /\  ( A  +Q  B )  e.  Q. ) )
87simpld 111 . . . . . . . . . 10  |-  ( ( A  +Q  B ) 
<Q  ( A  +Q  B
)  ->  ( A  +Q  B )  e.  Q. )
9 elex 2741 . . . . . . . . . 10  |-  ( ( A  +Q  B )  e.  Q.  ->  ( A  +Q  B )  e. 
_V )
108, 9syl 14 . . . . . . . . 9  |-  ( ( A  +Q  B ) 
<Q  ( A  +Q  B
)  ->  ( A  +Q  B )  e.  _V )
11 breq2 3993 . . . . . . . . 9  |-  ( u  =  ( A  +Q  B )  ->  (
( A  +Q  B
)  <Q  u  <->  ( A  +Q  B )  <Q  ( A  +Q  B ) ) )
1210, 11elab3 2882 . . . . . . . 8  |-  ( ( A  +Q  B )  e.  { u  |  ( A  +Q  B
)  <Q  u }  <->  ( A  +Q  B )  <Q  ( A  +Q  B ) )
135, 12sylnibr 672 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  +Q  B )  e.  {
u  |  ( A  +Q  B )  <Q  u } )
14 ltnqex 7511 . . . . . . . . 9  |-  { l  |  l  <Q  ( A  +Q  B ) }  e.  _V
15 gtnqex 7512 . . . . . . . . 9  |-  { u  |  ( A  +Q  B )  <Q  u }  e.  _V
1614, 15op2nd 6126 . . . . . . . 8  |-  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. )  =  {
u  |  ( A  +Q  B )  <Q  u }
1716eleq2i 2237 . . . . . . 7  |-  ( ( A  +Q  B )  e.  ( 2nd `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  <->  ( A  +Q  B )  e.  {
u  |  ( A  +Q  B )  <Q  u } )
1813, 17sylnibr 672 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  +Q  B )  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B
)  <Q  u } >. ) )
191, 18ssneldd 3150 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  +Q  B )  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )
2019adantr 274 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )  ->  -.  ( A  +Q  B
)  e.  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
21 nqprlu 7509 . . . . . . 7  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
22 nqprlu 7509 . . . . . . 7  |-  ( B  e.  Q.  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
23 addclpr 7499 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  B } ,  {
u  |  B  <Q  u } >.  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  e.  P. )
2421, 22, 23syl2an 287 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  e.  P. )
25 prop 7437 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  e.  P.  ->  <. ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) ,  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) >.  e.  P. )
2624, 25syl 14 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> 
<. ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ,  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) >.  e.  P. )
27 vex 2733 . . . . . . 7  |-  r  e. 
_V
28 breq1 3992 . . . . . . 7  |-  ( l  =  r  ->  (
l  <Q  ( A  +Q  B )  <->  r  <Q  ( A  +Q  B ) ) )
2914, 15op1st 6125 . . . . . . 7  |-  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. )  =  {
l  |  l  <Q 
( A  +Q  B
) }
3027, 28, 29elab2 2878 . . . . . 6  |-  ( r  e.  ( 1st `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  <->  r  <Q  ( A  +Q  B ) )
3130biimpi 119 . . . . 5  |-  ( r  e.  ( 1st `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  ->  r  <Q  ( A  +Q  B
) )
32 prloc 7453 . . . . 5  |-  ( (
<. ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ,  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) >.  e.  P.  /\  r  <Q  ( A  +Q  B ) )  -> 
( r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  \/  ( A  +Q  B )  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3326, 31, 32syl2an 287 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )  -> 
( r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  \/  ( A  +Q  B )  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3420, 33ecased 1344 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )  -> 
r  e.  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
3534ex 114 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B
)  <Q  u } >. )  ->  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3635ssrdv 3153 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  C_  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703    e. wcel 2141   {cab 2156   _Vcvv 2730    C_ wss 3121   <.cop 3586   class class class wbr 3989    Or wor 4280   ` cfv 5198  (class class class)co 5853   1stc1st 6117   2ndc2nd 6118   Q.cnq 7242    +Q cplq 7244    <Q cltq 7247   P.cnp 7253    +P. cpp 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430
This theorem is referenced by:  addnqpr  7523
  Copyright terms: Public domain W3C validator