ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprlemfl Unicode version

Theorem addnqprlemfl 7179
Description: Lemma for addnqpr 7181. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
Assertion
Ref Expression
addnqprlemfl  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  C_  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
Distinct variable groups:    A, l, u    B, l, u

Proof of Theorem addnqprlemfl
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 addnqprlemru 7178 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  |  l 
<Q  ( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. ) )
2 ltsonq 7018 . . . . . . . . 9  |-  <Q  Or  Q.
3 addclnq 6995 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  e.  Q. )
4 sonr 4153 . . . . . . . . 9  |-  ( ( 
<Q  Or  Q.  /\  ( A  +Q  B )  e. 
Q. )  ->  -.  ( A  +Q  B
)  <Q  ( A  +Q  B ) )
52, 3, 4sylancr 406 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  +Q  B )  <Q  ( A  +Q  B ) )
6 ltrelnq 6985 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
76brel 4503 . . . . . . . . . . 11  |-  ( ( A  +Q  B ) 
<Q  ( A  +Q  B
)  ->  ( ( A  +Q  B )  e. 
Q.  /\  ( A  +Q  B )  e.  Q. ) )
87simpld 111 . . . . . . . . . 10  |-  ( ( A  +Q  B ) 
<Q  ( A  +Q  B
)  ->  ( A  +Q  B )  e.  Q. )
9 elex 2631 . . . . . . . . . 10  |-  ( ( A  +Q  B )  e.  Q.  ->  ( A  +Q  B )  e. 
_V )
108, 9syl 14 . . . . . . . . 9  |-  ( ( A  +Q  B ) 
<Q  ( A  +Q  B
)  ->  ( A  +Q  B )  e.  _V )
11 breq2 3855 . . . . . . . . 9  |-  ( u  =  ( A  +Q  B )  ->  (
( A  +Q  B
)  <Q  u  <->  ( A  +Q  B )  <Q  ( A  +Q  B ) ) )
1210, 11elab3 2768 . . . . . . . 8  |-  ( ( A  +Q  B )  e.  { u  |  ( A  +Q  B
)  <Q  u }  <->  ( A  +Q  B )  <Q  ( A  +Q  B ) )
135, 12sylnibr 638 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  +Q  B )  e.  {
u  |  ( A  +Q  B )  <Q  u } )
14 ltnqex 7169 . . . . . . . . 9  |-  { l  |  l  <Q  ( A  +Q  B ) }  e.  _V
15 gtnqex 7170 . . . . . . . . 9  |-  { u  |  ( A  +Q  B )  <Q  u }  e.  _V
1614, 15op2nd 5932 . . . . . . . 8  |-  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. )  =  {
u  |  ( A  +Q  B )  <Q  u }
1716eleq2i 2155 . . . . . . 7  |-  ( ( A  +Q  B )  e.  ( 2nd `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  <->  ( A  +Q  B )  e.  {
u  |  ( A  +Q  B )  <Q  u } )
1813, 17sylnibr 638 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  +Q  B )  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B
)  <Q  u } >. ) )
191, 18ssneldd 3029 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  -.  ( A  +Q  B )  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )
2019adantr 271 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )  ->  -.  ( A  +Q  B
)  e.  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
21 nqprlu 7167 . . . . . . 7  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
22 nqprlu 7167 . . . . . . 7  |-  ( B  e.  Q.  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
23 addclpr 7157 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  B } ,  {
u  |  B  <Q  u } >.  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  e.  P. )
2421, 22, 23syl2an 284 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  e.  P. )
25 prop 7095 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  e.  P.  ->  <. ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) ,  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) >.  e.  P. )
2624, 25syl 14 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> 
<. ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ,  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) >.  e.  P. )
27 vex 2623 . . . . . . 7  |-  r  e. 
_V
28 breq1 3854 . . . . . . 7  |-  ( l  =  r  ->  (
l  <Q  ( A  +Q  B )  <->  r  <Q  ( A  +Q  B ) ) )
2914, 15op1st 5931 . . . . . . 7  |-  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. )  =  {
l  |  l  <Q 
( A  +Q  B
) }
3027, 28, 29elab2 2764 . . . . . 6  |-  ( r  e.  ( 1st `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  <->  r  <Q  ( A  +Q  B ) )
3130biimpi 119 . . . . 5  |-  ( r  e.  ( 1st `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  ->  r  <Q  ( A  +Q  B
) )
32 prloc 7111 . . . . 5  |-  ( (
<. ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ,  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) >.  e.  P.  /\  r  <Q  ( A  +Q  B ) )  -> 
( r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  \/  ( A  +Q  B )  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3326, 31, 32syl2an 284 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )  -> 
( r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  \/  ( A  +Q  B )  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3420, 33ecased 1286 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )  -> 
r  e.  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
3534ex 114 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B
)  <Q  u } >. )  ->  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) ) )
3635ssrdv 3032 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  C_  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 665    e. wcel 1439   {cab 2075   _Vcvv 2620    C_ wss 3000   <.cop 3453   class class class wbr 3851    Or wor 4131   ` cfv 5028  (class class class)co 5666   1stc1st 5923   2ndc2nd 5924   Q.cnq 6900    +Q cplq 6902    <Q cltq 6905   P.cnp 6911    +P. cpp 6913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-eprel 4125  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-1o 6195  df-2o 6196  df-oadd 6199  df-omul 6200  df-er 6306  df-ec 6308  df-qs 6312  df-ni 6924  df-pli 6925  df-mi 6926  df-lti 6927  df-plpq 6964  df-mpq 6965  df-enq 6967  df-nqqs 6968  df-plqqs 6969  df-mqqs 6970  df-1nqqs 6971  df-rq 6972  df-ltnqqs 6973  df-enq0 7044  df-nq0 7045  df-0nq0 7046  df-plq0 7047  df-mq0 7048  df-inp 7086  df-iplp 7088
This theorem is referenced by:  addnqpr  7181
  Copyright terms: Public domain W3C validator