ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodntrivap Unicode version

Theorem fprodntrivap 11525
Description: A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodntriv.1  |-  Z  =  ( ZZ>= `  M )
fprodntriv.2  |-  ( ph  ->  N  e.  Z )
fprodntriv.3  |-  ( ph  ->  A  C_  ( M ... N ) )
Assertion
Ref Expression
fprodntrivap  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
Distinct variable groups:    A, k, n, y    B, n, y    n, N, y    k, Z, n, y    ph, n
Allowed substitution hints:    ph( y, k)    B( k)    M( y, k, n)    N( k)

Proof of Theorem fprodntrivap
Dummy variables  m  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodntriv.2 . . . . 5  |-  ( ph  ->  N  e.  Z )
2 fprodntriv.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
31, 2eleqtrdi 2259 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 peano2uz 9521 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
53, 4syl 14 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
65, 2eleqtrrdi 2260 . 2  |-  ( ph  ->  ( N  +  1 )  e.  Z )
7 1ap0 8488 . . 3  |-  1 #  0
8 eqid 2165 . . . 4  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
9 eluzelz 9475 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
109, 2eleq2s 2261 . . . . . 6  |-  ( N  e.  Z  ->  N  e.  ZZ )
111, 10syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
1211peano2zd 9316 . . . 4  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
13 seqex 10382 . . . . 5  |-  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  e.  _V
1413a1i 9 . . . 4  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  e.  _V )
15 1cnd 7915 . . . 4  |-  ( ph  ->  1  e.  CC )
16 simpr 109 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  n  e.  ( ZZ>= `  ( N  +  1 ) ) )
17 fprodntriv.3 . . . . . . . . . 10  |-  ( ph  ->  A  C_  ( M ... N ) )
1817ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  A  C_  ( M ... N
) )
1911ad2antrr 480 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  N  e.  ZZ )
2019zred 9313 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  N  e.  RR )
2119peano2zd 9316 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( N  +  1 )  e.  ZZ )
2221zred 9313 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( N  +  1 )  e.  RR )
23 elfzelz 9960 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( ( N  +  1 ) ... n )  ->  m  e.  ZZ )
2423adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  m  e.  ZZ )
2524zred 9313 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  m  e.  RR )
2620ltp1d 8825 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  N  <  ( N  +  1 ) )
27 elfzle1 9962 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( ( N  +  1 ) ... n )  ->  ( N  +  1 )  <_  m )
2827adantl 275 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( N  +  1 )  <_  m )
2920, 22, 25, 26, 28ltletrd 8321 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  N  <  m )
30 zltnle 9237 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  ( N  <  m  <->  -.  m  <_  N )
)
3119, 24, 30syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( N  <  m  <->  -.  m  <_  N ) )
3229, 31mpbid 146 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  -.  m  <_  N )
3332intnand 921 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  -.  ( M  <_  m  /\  m  <_  N ) )
3433intnand 921 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  -.  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  m  e.  ZZ )  /\  ( M  <_  m  /\  m  <_  N ) ) )
35 elfz2 9951 . . . . . . . . . 10  |-  ( m  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  m  e.  ZZ )  /\  ( M  <_  m  /\  m  <_  N ) ) )
3634, 35sylnibr 667 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  -.  m  e.  ( M ... N ) )
3718, 36ssneldd 3145 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  -.  m  e.  A )
3837iffalsed 3530 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 )  =  1 )
396ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( N  +  1 )  e.  Z )
40 elfzuz 9956 . . . . . . . . . 10  |-  ( m  e.  ( ( N  +  1 ) ... n )  ->  m  e.  ( ZZ>= `  ( N  +  1 ) ) )
4140adantl 275 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  m  e.  ( ZZ>= `  ( N  +  1 ) ) )
422uztrn2 9483 . . . . . . . . 9  |-  ( ( ( N  +  1 )  e.  Z  /\  m  e.  ( ZZ>= `  ( N  +  1
) ) )  ->  m  e.  Z )
4339, 41, 42syl2anc 409 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  m  e.  Z )
44 ax-1cn 7846 . . . . . . . . 9  |-  1  e.  CC
4538, 44eqeltrdi 2257 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 )  e.  CC )
46 nfcv 2308 . . . . . . . . 9  |-  F/_ k
m
47 nfv 1516 . . . . . . . . . 10  |-  F/ k  m  e.  A
48 nfcsb1v 3078 . . . . . . . . . 10  |-  F/_ k [_ m  /  k ]_ B
49 nfcv 2308 . . . . . . . . . 10  |-  F/_ k
1
5047, 48, 49nfif 3548 . . . . . . . . 9  |-  F/_ k if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 )
51 eleq1w 2227 . . . . . . . . . 10  |-  ( k  =  m  ->  (
k  e.  A  <->  m  e.  A ) )
52 csbeq1a 3054 . . . . . . . . . 10  |-  ( k  =  m  ->  B  =  [_ m  /  k ]_ B )
5351, 52ifbieq1d 3542 . . . . . . . . 9  |-  ( k  =  m  ->  if ( k  e.  A ,  B ,  1 )  =  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 ) )
54 eqid 2165 . . . . . . . . 9  |-  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) )
5546, 50, 53, 54fvmptf 5578 . . . . . . . 8  |-  ( ( m  e.  Z  /\  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 )  e.  CC )  -> 
( ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) `
 m )  =  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 ) )
5643, 45, 55syl2anc 409 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  (
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) `  m )  =  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 ) )
57 1ex 7894 . . . . . . . . 9  |-  1  e.  _V
5857fvconst2 5701 . . . . . . . 8  |-  ( m  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( (
( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  m )  =  1 )
5941, 58syl 14 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  (
( ( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  m
)  =  1 )
6038, 56, 593eqtr4d 2208 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  (
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) `  m )  =  ( ( ( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  m
) )
616ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  e.  Z )
62 simpr 109 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  p  e.  ( ZZ>= `  ( N  +  1 ) ) )
632uztrn2 9483 . . . . . . . . 9  |-  ( ( ( N  +  1 )  e.  Z  /\  p  e.  ( ZZ>= `  ( N  +  1
) ) )  ->  p  e.  Z )
6461, 62, 63syl2anc 409 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  p  e.  Z )
6517ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  A  C_  ( M ... N ) )
6611ad2antrr 480 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ZZ )
6766zred 9313 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  RR )
68 peano2re 8034 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
6967, 68syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  e.  RR )
70 eluzelz 9475 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  ( ZZ>= `  ( N  +  1 ) )  ->  p  e.  ZZ )
7170adantl 275 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  p  e.  ZZ )
7271zred 9313 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  p  e.  RR )
7367ltp1d 8825 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  <  ( N  +  1 ) )
74 eluzle 9478 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( N  +  1 )  <_  p )
7574adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  <_  p )
7667, 69, 72, 73, 75ltletrd 8321 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  <  p )
77 zltnle 9237 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  p  e.  ZZ )  ->  ( N  <  p  <->  -.  p  <_  N )
)
7866, 71, 77syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  <  p  <->  -.  p  <_  N ) )
7976, 78mpbid 146 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  p  <_  N )
8079intnand 921 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  ( M  <_  p  /\  p  <_  N ) )
8180intnand 921 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  (
( M  e.  ZZ  /\  N  e.  ZZ  /\  p  e.  ZZ )  /\  ( M  <_  p  /\  p  <_  N ) ) )
82 elfz2 9951 . . . . . . . . . . . 12  |-  ( p  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  p  e.  ZZ )  /\  ( M  <_  p  /\  p  <_  N ) ) )
8381, 82sylnibr 667 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  p  e.  ( M ... N
) )
8465, 83ssneldd 3145 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  p  e.  A )
8584iffalsed 3530 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  if (
p  e.  A ,  [_ p  /  k ]_ B ,  1 )  =  1 )
8685, 44eqeltrdi 2257 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  if (
p  e.  A ,  [_ p  /  k ]_ B ,  1 )  e.  CC )
87 nfcv 2308 . . . . . . . . 9  |-  F/_ k
p
88 nfv 1516 . . . . . . . . . 10  |-  F/ k  p  e.  A
89 nfcsb1v 3078 . . . . . . . . . 10  |-  F/_ k [_ p  /  k ]_ B
9088, 89, 49nfif 3548 . . . . . . . . 9  |-  F/_ k if ( p  e.  A ,  [_ p  /  k ]_ B ,  1 )
91 eleq1w 2227 . . . . . . . . . 10  |-  ( k  =  p  ->  (
k  e.  A  <->  p  e.  A ) )
92 csbeq1a 3054 . . . . . . . . . 10  |-  ( k  =  p  ->  B  =  [_ p  /  k ]_ B )
9391, 92ifbieq1d 3542 . . . . . . . . 9  |-  ( k  =  p  ->  if ( k  e.  A ,  B ,  1 )  =  if ( p  e.  A ,  [_ p  /  k ]_ B ,  1 ) )
9487, 90, 93, 54fvmptf 5578 . . . . . . . 8  |-  ( ( p  e.  Z  /\  if ( p  e.  A ,  [_ p  /  k ]_ B ,  1 )  e.  CC )  -> 
( ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) `
 p )  =  if ( p  e.  A ,  [_ p  /  k ]_ B ,  1 ) )
9564, 86, 94syl2anc 409 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) `  p )  =  if ( p  e.  A ,  [_ p  /  k ]_ B ,  1 ) )
9695, 86eqeltrd 2243 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) `  p )  e.  CC )
9757fvconst2 5701 . . . . . . . 8  |-  ( p  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( (
( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  p )  =  1 )
9897adantl 275 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  p )  =  1 )
9998, 44eqeltrdi 2257 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  p )  e.  CC )
100 mulcl 7880 . . . . . . 7  |-  ( ( p  e.  CC  /\  q  e.  CC )  ->  ( p  x.  q
)  e.  CC )
101100adantl 275 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( p  e.  CC  /\  q  e.  CC ) )  -> 
( p  x.  q
)  e.  CC )
10216, 60, 96, 99, 101seq3fveq 10406 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) ) `
 n )  =  (  seq ( N  +  1 ) (  x.  ,  ( (
ZZ>= `  ( N  + 
1 ) )  X. 
{ 1 } ) ) `  n ) )
1038prodf1 11483 . . . . . 6  |-  ( n  e.  ( ZZ>= `  ( N  +  1 ) )  ->  (  seq ( N  +  1
) (  x.  , 
( ( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) ) `  n )  =  1 )
104103adantl 275 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  , 
( ( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) ) `  n )  =  1 )
105102, 104eqtrd 2198 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) ) `
 n )  =  1 )
1068, 12, 14, 15, 105climconst 11231 . . 3  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  1 )
107 breq1 3985 . . . . 5  |-  ( y  =  1  ->  (
y #  0  <->  1 #  0
) )
108 breq2 3986 . . . . 5  |-  ( y  =  1  ->  (  seq ( N  +  1 ) (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) )  ~~>  y  <->  seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  1 ) )
109107, 108anbi12d 465 . . . 4  |-  ( y  =  1  ->  (
( y #  0  /\ 
seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  ( 1 #  0  /\  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  1 ) ) )
11057, 109spcev 2821 . . 3  |-  ( ( 1 #  0  /\  seq ( N  +  1
) (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) )  ~~>  1 )  ->  E. y
( y #  0  /\ 
seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
1117, 106, 110sylancr 411 . 2  |-  ( ph  ->  E. y ( y #  0  /\  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
112 seqeq1 10383 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  seq n (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) )  =  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) ) )
113112breq1d 3992 . . . . 5  |-  ( n  =  ( N  + 
1 )  ->  (  seq n (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) )  ~~>  y  <->  seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
114113anbi2d 460 . . . 4  |-  ( n  =  ( N  + 
1 )  ->  (
( y #  0  /\ 
seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  ( y #  0  /\  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) ) )
115114exbidv 1813 . . 3  |-  ( n  =  ( N  + 
1 )  ->  ( E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. y ( y #  0  /\  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) ) )
116115rspcev 2830 . 2  |-  ( ( ( N  +  1 )  e.  Z  /\  E. y ( y #  0  /\  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )  ->  E. n  e.  Z  E. y
( y #  0  /\ 
seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
1176, 111, 116syl2anc 409 1  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343   E.wex 1480    e. wcel 2136   E.wrex 2445   _Vcvv 2726   [_csb 3045    C_ wss 3116   ifcif 3520   {csn 3576   class class class wbr 3982    |-> cmpt 4043    X. cxp 4602   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    < clt 7933    <_ cle 7934   # cap 8479   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944    seqcseq 10380    ~~> cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  fprodssdc  11531
  Copyright terms: Public domain W3C validator