ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodntrivap Unicode version

Theorem fprodntrivap 11592
Description: A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodntriv.1  |-  Z  =  ( ZZ>= `  M )
fprodntriv.2  |-  ( ph  ->  N  e.  Z )
fprodntriv.3  |-  ( ph  ->  A  C_  ( M ... N ) )
Assertion
Ref Expression
fprodntrivap  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
Distinct variable groups:    A, k, n, y    B, n, y    n, N, y    k, Z, n, y    ph, n
Allowed substitution hints:    ph( y, k)    B( k)    M( y, k, n)    N( k)

Proof of Theorem fprodntrivap
Dummy variables  m  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodntriv.2 . . . . 5  |-  ( ph  ->  N  e.  Z )
2 fprodntriv.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
31, 2eleqtrdi 2270 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 peano2uz 9583 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
53, 4syl 14 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
65, 2eleqtrrdi 2271 . 2  |-  ( ph  ->  ( N  +  1 )  e.  Z )
7 1ap0 8547 . . 3  |-  1 #  0
8 eqid 2177 . . . 4  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
9 eluzelz 9537 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
109, 2eleq2s 2272 . . . . . 6  |-  ( N  e.  Z  ->  N  e.  ZZ )
111, 10syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
1211peano2zd 9378 . . . 4  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
13 seqex 10447 . . . . 5  |-  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  e.  _V
1413a1i 9 . . . 4  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  e.  _V )
15 1cnd 7973 . . . 4  |-  ( ph  ->  1  e.  CC )
16 simpr 110 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  n  e.  ( ZZ>= `  ( N  +  1 ) ) )
17 fprodntriv.3 . . . . . . . . . 10  |-  ( ph  ->  A  C_  ( M ... N ) )
1817ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  A  C_  ( M ... N
) )
1911ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  N  e.  ZZ )
2019zred 9375 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  N  e.  RR )
2119peano2zd 9378 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( N  +  1 )  e.  ZZ )
2221zred 9375 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( N  +  1 )  e.  RR )
23 elfzelz 10025 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( ( N  +  1 ) ... n )  ->  m  e.  ZZ )
2423adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  m  e.  ZZ )
2524zred 9375 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  m  e.  RR )
2620ltp1d 8887 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  N  <  ( N  +  1 ) )
27 elfzle1 10027 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( ( N  +  1 ) ... n )  ->  ( N  +  1 )  <_  m )
2827adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( N  +  1 )  <_  m )
2920, 22, 25, 26, 28ltletrd 8380 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  N  <  m )
30 zltnle 9299 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  ( N  <  m  <->  -.  m  <_  N )
)
3119, 24, 30syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( N  <  m  <->  -.  m  <_  N ) )
3229, 31mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  -.  m  <_  N )
3332intnand 931 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  -.  ( M  <_  m  /\  m  <_  N ) )
3433intnand 931 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  -.  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  m  e.  ZZ )  /\  ( M  <_  m  /\  m  <_  N ) ) )
35 elfz2 10015 . . . . . . . . . 10  |-  ( m  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  m  e.  ZZ )  /\  ( M  <_  m  /\  m  <_  N ) ) )
3634, 35sylnibr 677 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  -.  m  e.  ( M ... N ) )
3718, 36ssneldd 3159 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  -.  m  e.  A )
3837iffalsed 3545 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 )  =  1 )
396ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( N  +  1 )  e.  Z )
40 elfzuz 10021 . . . . . . . . . 10  |-  ( m  e.  ( ( N  +  1 ) ... n )  ->  m  e.  ( ZZ>= `  ( N  +  1 ) ) )
4140adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  m  e.  ( ZZ>= `  ( N  +  1 ) ) )
422uztrn2 9545 . . . . . . . . 9  |-  ( ( ( N  +  1 )  e.  Z  /\  m  e.  ( ZZ>= `  ( N  +  1
) ) )  ->  m  e.  Z )
4339, 41, 42syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  m  e.  Z )
44 ax-1cn 7904 . . . . . . . . 9  |-  1  e.  CC
4538, 44eqeltrdi 2268 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 )  e.  CC )
46 nfcv 2319 . . . . . . . . 9  |-  F/_ k
m
47 nfv 1528 . . . . . . . . . 10  |-  F/ k  m  e.  A
48 nfcsb1v 3091 . . . . . . . . . 10  |-  F/_ k [_ m  /  k ]_ B
49 nfcv 2319 . . . . . . . . . 10  |-  F/_ k
1
5047, 48, 49nfif 3563 . . . . . . . . 9  |-  F/_ k if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 )
51 eleq1w 2238 . . . . . . . . . 10  |-  ( k  =  m  ->  (
k  e.  A  <->  m  e.  A ) )
52 csbeq1a 3067 . . . . . . . . . 10  |-  ( k  =  m  ->  B  =  [_ m  /  k ]_ B )
5351, 52ifbieq1d 3557 . . . . . . . . 9  |-  ( k  =  m  ->  if ( k  e.  A ,  B ,  1 )  =  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 ) )
54 eqid 2177 . . . . . . . . 9  |-  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) )
5546, 50, 53, 54fvmptf 5609 . . . . . . . 8  |-  ( ( m  e.  Z  /\  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 )  e.  CC )  -> 
( ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) `
 m )  =  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 ) )
5643, 45, 55syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  (
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) `  m )  =  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 ) )
57 1ex 7952 . . . . . . . . 9  |-  1  e.  _V
5857fvconst2 5733 . . . . . . . 8  |-  ( m  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( (
( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  m )  =  1 )
5941, 58syl 14 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  (
( ( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  m
)  =  1 )
6038, 56, 593eqtr4d 2220 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  (
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) `  m )  =  ( ( ( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  m
) )
616ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  e.  Z )
62 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  p  e.  ( ZZ>= `  ( N  +  1 ) ) )
632uztrn2 9545 . . . . . . . . 9  |-  ( ( ( N  +  1 )  e.  Z  /\  p  e.  ( ZZ>= `  ( N  +  1
) ) )  ->  p  e.  Z )
6461, 62, 63syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  p  e.  Z )
6517ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  A  C_  ( M ... N ) )
6611ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ZZ )
6766zred 9375 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  RR )
68 peano2re 8093 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
6967, 68syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  e.  RR )
70 eluzelz 9537 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  ( ZZ>= `  ( N  +  1 ) )  ->  p  e.  ZZ )
7170adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  p  e.  ZZ )
7271zred 9375 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  p  e.  RR )
7367ltp1d 8887 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  <  ( N  +  1 ) )
74 eluzle 9540 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( N  +  1 )  <_  p )
7574adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  <_  p )
7667, 69, 72, 73, 75ltletrd 8380 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  <  p )
77 zltnle 9299 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  p  e.  ZZ )  ->  ( N  <  p  <->  -.  p  <_  N )
)
7866, 71, 77syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  <  p  <->  -.  p  <_  N ) )
7976, 78mpbid 147 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  p  <_  N )
8079intnand 931 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  ( M  <_  p  /\  p  <_  N ) )
8180intnand 931 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  (
( M  e.  ZZ  /\  N  e.  ZZ  /\  p  e.  ZZ )  /\  ( M  <_  p  /\  p  <_  N ) ) )
82 elfz2 10015 . . . . . . . . . . . 12  |-  ( p  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  p  e.  ZZ )  /\  ( M  <_  p  /\  p  <_  N ) ) )
8381, 82sylnibr 677 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  p  e.  ( M ... N
) )
8465, 83ssneldd 3159 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  p  e.  A )
8584iffalsed 3545 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  if (
p  e.  A ,  [_ p  /  k ]_ B ,  1 )  =  1 )
8685, 44eqeltrdi 2268 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  if (
p  e.  A ,  [_ p  /  k ]_ B ,  1 )  e.  CC )
87 nfcv 2319 . . . . . . . . 9  |-  F/_ k
p
88 nfv 1528 . . . . . . . . . 10  |-  F/ k  p  e.  A
89 nfcsb1v 3091 . . . . . . . . . 10  |-  F/_ k [_ p  /  k ]_ B
9088, 89, 49nfif 3563 . . . . . . . . 9  |-  F/_ k if ( p  e.  A ,  [_ p  /  k ]_ B ,  1 )
91 eleq1w 2238 . . . . . . . . . 10  |-  ( k  =  p  ->  (
k  e.  A  <->  p  e.  A ) )
92 csbeq1a 3067 . . . . . . . . . 10  |-  ( k  =  p  ->  B  =  [_ p  /  k ]_ B )
9391, 92ifbieq1d 3557 . . . . . . . . 9  |-  ( k  =  p  ->  if ( k  e.  A ,  B ,  1 )  =  if ( p  e.  A ,  [_ p  /  k ]_ B ,  1 ) )
9487, 90, 93, 54fvmptf 5609 . . . . . . . 8  |-  ( ( p  e.  Z  /\  if ( p  e.  A ,  [_ p  /  k ]_ B ,  1 )  e.  CC )  -> 
( ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) `
 p )  =  if ( p  e.  A ,  [_ p  /  k ]_ B ,  1 ) )
9564, 86, 94syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) `  p )  =  if ( p  e.  A ,  [_ p  /  k ]_ B ,  1 ) )
9695, 86eqeltrd 2254 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) `  p )  e.  CC )
9757fvconst2 5733 . . . . . . . 8  |-  ( p  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( (
( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  p )  =  1 )
9897adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  p )  =  1 )
9998, 44eqeltrdi 2268 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  p )  e.  CC )
100 mulcl 7938 . . . . . . 7  |-  ( ( p  e.  CC  /\  q  e.  CC )  ->  ( p  x.  q
)  e.  CC )
101100adantl 277 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( p  e.  CC  /\  q  e.  CC ) )  -> 
( p  x.  q
)  e.  CC )
10216, 60, 96, 99, 101seq3fveq 10471 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) ) `
 n )  =  (  seq ( N  +  1 ) (  x.  ,  ( (
ZZ>= `  ( N  + 
1 ) )  X. 
{ 1 } ) ) `  n ) )
1038prodf1 11550 . . . . . 6  |-  ( n  e.  ( ZZ>= `  ( N  +  1 ) )  ->  (  seq ( N  +  1
) (  x.  , 
( ( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) ) `  n )  =  1 )
104103adantl 277 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  , 
( ( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) ) `  n )  =  1 )
105102, 104eqtrd 2210 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) ) `
 n )  =  1 )
1068, 12, 14, 15, 105climconst 11298 . . 3  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  1 )
107 breq1 4007 . . . . 5  |-  ( y  =  1  ->  (
y #  0  <->  1 #  0
) )
108 breq2 4008 . . . . 5  |-  ( y  =  1  ->  (  seq ( N  +  1 ) (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) )  ~~>  y  <->  seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  1 ) )
109107, 108anbi12d 473 . . . 4  |-  ( y  =  1  ->  (
( y #  0  /\ 
seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  ( 1 #  0  /\  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  1 ) ) )
11057, 109spcev 2833 . . 3  |-  ( ( 1 #  0  /\  seq ( N  +  1
) (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) )  ~~>  1 )  ->  E. y
( y #  0  /\ 
seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
1117, 106, 110sylancr 414 . 2  |-  ( ph  ->  E. y ( y #  0  /\  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
112 seqeq1 10448 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  seq n (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) )  =  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) ) )
113112breq1d 4014 . . . . 5  |-  ( n  =  ( N  + 
1 )  ->  (  seq n (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) )  ~~>  y  <->  seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
114113anbi2d 464 . . . 4  |-  ( n  =  ( N  + 
1 )  ->  (
( y #  0  /\ 
seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  ( y #  0  /\  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) ) )
115114exbidv 1825 . . 3  |-  ( n  =  ( N  + 
1 )  ->  ( E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. y ( y #  0  /\  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) ) )
116115rspcev 2842 . 2  |-  ( ( ( N  +  1 )  e.  Z  /\  E. y ( y #  0  /\  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )  ->  E. n  e.  Z  E. y
( y #  0  /\ 
seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
1176, 111, 116syl2anc 411 1  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   E.wrex 2456   _Vcvv 2738   [_csb 3058    C_ wss 3130   ifcif 3535   {csn 3593   class class class wbr 4004    |-> cmpt 4065    X. cxp 4625   ` cfv 5217  (class class class)co 5875   CCcc 7809   RRcr 7810   0cc0 7811   1c1 7812    + caddc 7814    x. cmul 7816    < clt 7992    <_ cle 7993   # cap 8538   ZZcz 9253   ZZ>=cuz 9528   ...cfz 10008    seqcseq 10445    ~~> cli 11286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-n0 9177  df-z 9254  df-uz 9529  df-rp 9654  df-fz 10009  df-fzo 10143  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-rsqrt 11007  df-abs 11008  df-clim 11287
This theorem is referenced by:  fprodssdc  11598
  Copyright terms: Public domain W3C validator