ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodntrivap Unicode version

Theorem fprodntrivap 11730
Description: A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodntriv.1  |-  Z  =  ( ZZ>= `  M )
fprodntriv.2  |-  ( ph  ->  N  e.  Z )
fprodntriv.3  |-  ( ph  ->  A  C_  ( M ... N ) )
Assertion
Ref Expression
fprodntrivap  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
Distinct variable groups:    A, k, n, y    B, n, y    n, N, y    k, Z, n, y    ph, n
Allowed substitution hints:    ph( y, k)    B( k)    M( y, k, n)    N( k)

Proof of Theorem fprodntrivap
Dummy variables  m  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodntriv.2 . . . . 5  |-  ( ph  ->  N  e.  Z )
2 fprodntriv.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
31, 2eleqtrdi 2286 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 peano2uz 9651 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
53, 4syl 14 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
65, 2eleqtrrdi 2287 . 2  |-  ( ph  ->  ( N  +  1 )  e.  Z )
7 1ap0 8611 . . 3  |-  1 #  0
8 eqid 2193 . . . 4  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
9 eluzelz 9604 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
109, 2eleq2s 2288 . . . . . 6  |-  ( N  e.  Z  ->  N  e.  ZZ )
111, 10syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
1211peano2zd 9445 . . . 4  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
13 seqex 10523 . . . . 5  |-  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  e.  _V
1413a1i 9 . . . 4  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  e.  _V )
15 1cnd 8037 . . . 4  |-  ( ph  ->  1  e.  CC )
16 simpr 110 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  n  e.  ( ZZ>= `  ( N  +  1 ) ) )
17 fprodntriv.3 . . . . . . . . . 10  |-  ( ph  ->  A  C_  ( M ... N ) )
1817ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  A  C_  ( M ... N
) )
1911ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  N  e.  ZZ )
2019zred 9442 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  N  e.  RR )
2119peano2zd 9445 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( N  +  1 )  e.  ZZ )
2221zred 9442 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( N  +  1 )  e.  RR )
23 elfzelz 10094 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( ( N  +  1 ) ... n )  ->  m  e.  ZZ )
2423adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  m  e.  ZZ )
2524zred 9442 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  m  e.  RR )
2620ltp1d 8951 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  N  <  ( N  +  1 ) )
27 elfzle1 10096 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( ( N  +  1 ) ... n )  ->  ( N  +  1 )  <_  m )
2827adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( N  +  1 )  <_  m )
2920, 22, 25, 26, 28ltletrd 8444 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  N  <  m )
30 zltnle 9366 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  ( N  <  m  <->  -.  m  <_  N )
)
3119, 24, 30syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( N  <  m  <->  -.  m  <_  N ) )
3229, 31mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  -.  m  <_  N )
3332intnand 932 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  -.  ( M  <_  m  /\  m  <_  N ) )
3433intnand 932 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  -.  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  m  e.  ZZ )  /\  ( M  <_  m  /\  m  <_  N ) ) )
35 elfz2 10084 . . . . . . . . . 10  |-  ( m  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  m  e.  ZZ )  /\  ( M  <_  m  /\  m  <_  N ) ) )
3634, 35sylnibr 678 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  -.  m  e.  ( M ... N ) )
3718, 36ssneldd 3183 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  -.  m  e.  A )
3837iffalsed 3568 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 )  =  1 )
396ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( N  +  1 )  e.  Z )
40 elfzuz 10090 . . . . . . . . . 10  |-  ( m  e.  ( ( N  +  1 ) ... n )  ->  m  e.  ( ZZ>= `  ( N  +  1 ) ) )
4140adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  m  e.  ( ZZ>= `  ( N  +  1 ) ) )
422uztrn2 9613 . . . . . . . . 9  |-  ( ( ( N  +  1 )  e.  Z  /\  m  e.  ( ZZ>= `  ( N  +  1
) ) )  ->  m  e.  Z )
4339, 41, 42syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  m  e.  Z )
44 ax-1cn 7967 . . . . . . . . 9  |-  1  e.  CC
4538, 44eqeltrdi 2284 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 )  e.  CC )
46 nfcv 2336 . . . . . . . . 9  |-  F/_ k
m
47 nfv 1539 . . . . . . . . . 10  |-  F/ k  m  e.  A
48 nfcsb1v 3114 . . . . . . . . . 10  |-  F/_ k [_ m  /  k ]_ B
49 nfcv 2336 . . . . . . . . . 10  |-  F/_ k
1
5047, 48, 49nfif 3586 . . . . . . . . 9  |-  F/_ k if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 )
51 eleq1w 2254 . . . . . . . . . 10  |-  ( k  =  m  ->  (
k  e.  A  <->  m  e.  A ) )
52 csbeq1a 3090 . . . . . . . . . 10  |-  ( k  =  m  ->  B  =  [_ m  /  k ]_ B )
5351, 52ifbieq1d 3580 . . . . . . . . 9  |-  ( k  =  m  ->  if ( k  e.  A ,  B ,  1 )  =  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 ) )
54 eqid 2193 . . . . . . . . 9  |-  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) )
5546, 50, 53, 54fvmptf 5651 . . . . . . . 8  |-  ( ( m  e.  Z  /\  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 )  e.  CC )  -> 
( ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) `
 m )  =  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 ) )
5643, 45, 55syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  (
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) `  m )  =  if ( m  e.  A ,  [_ m  /  k ]_ B ,  1 ) )
57 1ex 8016 . . . . . . . . 9  |-  1  e.  _V
5857fvconst2 5775 . . . . . . . 8  |-  ( m  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( (
( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  m )  =  1 )
5941, 58syl 14 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  (
( ( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  m
)  =  1 )
6038, 56, 593eqtr4d 2236 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  (
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) `  m )  =  ( ( ( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  m
) )
616ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  e.  Z )
62 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  p  e.  ( ZZ>= `  ( N  +  1 ) ) )
632uztrn2 9613 . . . . . . . . 9  |-  ( ( ( N  +  1 )  e.  Z  /\  p  e.  ( ZZ>= `  ( N  +  1
) ) )  ->  p  e.  Z )
6461, 62, 63syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  p  e.  Z )
6517ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  A  C_  ( M ... N ) )
6611ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ZZ )
6766zred 9442 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  RR )
68 peano2re 8157 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
6967, 68syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  e.  RR )
70 eluzelz 9604 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  ( ZZ>= `  ( N  +  1 ) )  ->  p  e.  ZZ )
7170adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  p  e.  ZZ )
7271zred 9442 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  p  e.  RR )
7367ltp1d 8951 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  <  ( N  +  1 ) )
74 eluzle 9607 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( N  +  1 )  <_  p )
7574adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  <_  p )
7667, 69, 72, 73, 75ltletrd 8444 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  <  p )
77 zltnle 9366 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  p  e.  ZZ )  ->  ( N  <  p  <->  -.  p  <_  N )
)
7866, 71, 77syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  <  p  <->  -.  p  <_  N ) )
7976, 78mpbid 147 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  p  <_  N )
8079intnand 932 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  ( M  <_  p  /\  p  <_  N ) )
8180intnand 932 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  (
( M  e.  ZZ  /\  N  e.  ZZ  /\  p  e.  ZZ )  /\  ( M  <_  p  /\  p  <_  N ) ) )
82 elfz2 10084 . . . . . . . . . . . 12  |-  ( p  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  p  e.  ZZ )  /\  ( M  <_  p  /\  p  <_  N ) ) )
8381, 82sylnibr 678 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  p  e.  ( M ... N
) )
8465, 83ssneldd 3183 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  p  e.  A )
8584iffalsed 3568 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  if (
p  e.  A ,  [_ p  /  k ]_ B ,  1 )  =  1 )
8685, 44eqeltrdi 2284 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  if (
p  e.  A ,  [_ p  /  k ]_ B ,  1 )  e.  CC )
87 nfcv 2336 . . . . . . . . 9  |-  F/_ k
p
88 nfv 1539 . . . . . . . . . 10  |-  F/ k  p  e.  A
89 nfcsb1v 3114 . . . . . . . . . 10  |-  F/_ k [_ p  /  k ]_ B
9088, 89, 49nfif 3586 . . . . . . . . 9  |-  F/_ k if ( p  e.  A ,  [_ p  /  k ]_ B ,  1 )
91 eleq1w 2254 . . . . . . . . . 10  |-  ( k  =  p  ->  (
k  e.  A  <->  p  e.  A ) )
92 csbeq1a 3090 . . . . . . . . . 10  |-  ( k  =  p  ->  B  =  [_ p  /  k ]_ B )
9391, 92ifbieq1d 3580 . . . . . . . . 9  |-  ( k  =  p  ->  if ( k  e.  A ,  B ,  1 )  =  if ( p  e.  A ,  [_ p  /  k ]_ B ,  1 ) )
9487, 90, 93, 54fvmptf 5651 . . . . . . . 8  |-  ( ( p  e.  Z  /\  if ( p  e.  A ,  [_ p  /  k ]_ B ,  1 )  e.  CC )  -> 
( ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) `
 p )  =  if ( p  e.  A ,  [_ p  /  k ]_ B ,  1 ) )
9564, 86, 94syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) `  p )  =  if ( p  e.  A ,  [_ p  /  k ]_ B ,  1 ) )
9695, 86eqeltrd 2270 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) `  p )  e.  CC )
9757fvconst2 5775 . . . . . . . 8  |-  ( p  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( (
( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  p )  =  1 )
9897adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  p )  =  1 )
9998, 44eqeltrdi 2284 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  p  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) `  p )  e.  CC )
100 mulcl 8001 . . . . . . 7  |-  ( ( p  e.  CC  /\  q  e.  CC )  ->  ( p  x.  q
)  e.  CC )
101100adantl 277 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( p  e.  CC  /\  q  e.  CC ) )  -> 
( p  x.  q
)  e.  CC )
10216, 60, 96, 99, 101seq3fveq 10553 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) ) `
 n )  =  (  seq ( N  +  1 ) (  x.  ,  ( (
ZZ>= `  ( N  + 
1 ) )  X. 
{ 1 } ) ) `  n ) )
1038prodf1 11688 . . . . . 6  |-  ( n  e.  ( ZZ>= `  ( N  +  1 ) )  ->  (  seq ( N  +  1
) (  x.  , 
( ( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) ) `  n )  =  1 )
104103adantl 277 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  , 
( ( ZZ>= `  ( N  +  1 ) )  X.  { 1 } ) ) `  n )  =  1 )
105102, 104eqtrd 2226 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) ) `
 n )  =  1 )
1068, 12, 14, 15, 105climconst 11436 . . 3  |-  ( ph  ->  seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  1 )
107 breq1 4033 . . . . 5  |-  ( y  =  1  ->  (
y #  0  <->  1 #  0
) )
108 breq2 4034 . . . . 5  |-  ( y  =  1  ->  (  seq ( N  +  1 ) (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) )  ~~>  y  <->  seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  1 ) )
109107, 108anbi12d 473 . . . 4  |-  ( y  =  1  ->  (
( y #  0  /\ 
seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  ( 1 #  0  /\  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  1 ) ) )
11057, 109spcev 2856 . . 3  |-  ( ( 1 #  0  /\  seq ( N  +  1
) (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) )  ~~>  1 )  ->  E. y
( y #  0  /\ 
seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
1117, 106, 110sylancr 414 . 2  |-  ( ph  ->  E. y ( y #  0  /\  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
112 seqeq1 10524 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  seq n (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) )  =  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) ) )
113112breq1d 4040 . . . . 5  |-  ( n  =  ( N  + 
1 )  ->  (  seq n (  x.  , 
( k  e.  Z  |->  if ( k  e.  A ,  B , 
1 ) ) )  ~~>  y  <->  seq ( N  + 
1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
114113anbi2d 464 . . . 4  |-  ( n  =  ( N  + 
1 )  ->  (
( y #  0  /\ 
seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  ( y #  0  /\  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) ) )
115114exbidv 1836 . . 3  |-  ( n  =  ( N  + 
1 )  ->  ( E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. y ( y #  0  /\  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) ) )
116115rspcev 2865 . 2  |-  ( ( ( N  +  1 )  e.  Z  /\  E. y ( y #  0  /\  seq ( N  +  1 ) (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )  ->  E. n  e.  Z  E. y
( y #  0  /\ 
seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
1176, 111, 116syl2anc 411 1  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   E.wrex 2473   _Vcvv 2760   [_csb 3081    C_ wss 3154   ifcif 3558   {csn 3619   class class class wbr 4030    |-> cmpt 4091    X. cxp 4658   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    < clt 8056    <_ cle 8057   # cap 8602   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077    seqcseq 10521    ~~> cli 11424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-rsqrt 11145  df-abs 11146  df-clim 11425
This theorem is referenced by:  fprodssdc  11736
  Copyright terms: Public domain W3C validator